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Outgoing boundary conditions for finite-difference
elliptic water-wave models

By BiNnegy1r XU AND VigAy PANCHANG
Civil Engineering Department, University of Maine, Orono, Maine 04469, U.S.A.

Two-dimensional elliptic water-wave models based on the mild-slope equation find
wide application in engineering and other studies. Model results are often adversely
influenced by approximate treatment of the open boundary condition. A method to
incorporate the exact radiation condition at infinity in finite-difference models is
therefore developed. Since directly matching the solutions within the computational
domain to those outside is too stringent a requirement, the new method is based on
minimizing the overall discrepancy between the solutions along the open boundary.
This relaxation permits the development of a suitable solution method, which is
tested against analytical solutions for two situations. Satisfactory results are
obtained with no artificial reflection of wave energy from the open boundary, even
when it is placed very close to the scatterer.

1. Introduction

The ‘mild-slope’ equation, also known as the combined refraction—diffraction
equation (Berkhoff 1976), has received wide acceptance for performing engineering
simulations of wave propagation over arbitrary bathymetry and in complex coastal
domains. It can model the propagation of a wide spectrum of waves, from short
waves to long waves, and it has been successfully used (sometimes with appropriate
modifications) to simulate wave propagation in harbours, around breakwaters and
floating structures, in open coastal areas, in regions with marine vegetation, around
islands, etc. (See Panchang et al. (1991) for a list of references.)

While developing a computational model for the mild-slope wave equation, one
often encounters considerable difficulty in the treatment of the ‘open’ boundary
(where the computational domain intersects the surrounding sea). This boundary
contains (possibly in addition to a specified incident wave) ‘scattered’ waves that
arise from bathymetric effects and/or the presence of other (possibly reflecting)
boundaries. The scattered waves are not known a priori, and indeed the goal of the
modelling is the quantification of precisely these waves. Usually, therefore, the open
boundary is placed far enough away from the area of interest in the model, in the
hope that imprecise boundary conditions will not affect the results in this area. This
of course results in increased computation.

The mild-slope wave model is sometimes solved via the ‘ parabolic approximation’.
In this method, a dominant wave direction is chosen (say x; x > 0) and wave
spreading in only a limited aperture (typically about +45°) about the +xz-axis is
allowed. Wave propagation in the —x direction is also assumed to be negligible. The
upwave boundary (xz = 0) of the computational domain (x = 0; & < y < b) contains
only specified incident waves. Difficulty with the treatment of open boundaries can
thus arise only on the two lateral boundaries (y = @ and y = b). Recently, however,
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576 B. Xu and V. Panchang

Dalrymple & Martin (1992) have devised an eminently satisfactory method of
treating such boundaries in parabolic models, using an assumption of constant
depths outside these boundaries. The lateral boundary conditions are derived in
terms of an integration of quantities along the boundary. This allows waves to exit
the computational region with no spurious reflections from the open boundary.

In the context of the full elliptic mild-slope wave models, boundary conditions
may have to be specified for several open boundaries with arbitrary configurations
(depending on the complex shape of the harbour, etc.). Approximate outgoing
boundary conditions were utilized in elliptic models by Berkhoff et al. (1982) and
Panchang et al. (1988, 1991), on the assumption that all outgoing waves exited the
domain in a direction perpendicular to the boundary. This assumption is clearly not
true for all wave components and, as noted by Kirby (1989), can lead to spurious
oscillations in the solution. To alleviate this limitation of normal incidence along the
outgoing boundary, Kirby (1989) has proposed the use of various parabolic
approximations as boundary conditions for the scattered waves; these parabolic
equations can accommodate waves exiting through a larger aperture (noted earlier).
However the aperture is still limited. In addition, the very nature of the parabolic
equation requires, a priors, the selection of the ‘dominant’ direction for the exiting
waves (which may not be known) and the placement of the open boundary in a
direction perpendicular to it. This can be problematic in domains of complex shape,
particularly if several incident wave directions are to be treated.

Rather than approximate the actual boundary conditions, the modeller may
prefer to approximate the bathymetry and represent the sea region outside the
computational domain by a constant depth. (This is probably a good approximation
for short waves outside the open boundary since it may be deep water.) With this
assumption, it is possible to exactly describe the properties of the scattered waves
outside the computational domain (although an exact boundary condition itself is
not explicitly obtained.) The scattered waves must satisfy the radiation condition at
infinity, and they can be described by a Bessel-Fourier series. Within the finite-
element framework, this information can be utilized through the use of a
‘superelement’. The radiation condition at infinity is naturally incorporated into the
variational formulation, and no spurious reflections arise. (See Mei (1983) for details.)
Finite-element models of this type have been developed by Houston (1981), Tsay &
Liu (1983), Kostense et al. (1986), and Chen & Houston (1987).

Despite the success of finite-element models in treating the open boundaries, they
can be cumbersome to construct and apply. For instance, finite-element grid-
generation and modification may be a major task even at present. (Grid-generation
for the Kawaihae harbour (Hawaii) took several weeks at the US Army Waterways
Experiment Station (Lillycrop et al. 1990)). Finite-difference elliptic models are
therefore sometimes preferred, due to their simplicity and ease of construction and
implementation. Finite-difference models for very large wave problems have been
recently developed by Panchang ef al. (1988, 1991) and by Li & Anastasiou (1992).
They all suffer from inadequate treatment of the open boundary conditions, though,
and this problem has stood in the way of further development of such models. The
object of this paper, therefore, is to incorporate the exact radiation condition at
infinity in a finite-difference model. Unlike finite-element models, this condition does
not enter naturally into the scheme. However, we use an optimization criterion to
relate the solutions inside and outside the computational domain. As in the case of
the ‘perfect’ treatment of open boundary conditions for parabolic models (Dalrymple
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& Martin 1992) and also the approximate formulations of Kirby (1989) for elliptic
models, all points on the open boundary now get connected, and an appropriate
numerical solution methodology is devised.

The layout of the paper is as follows. Section 2 gives a mathematical description
of the problem from a modelling viewpoint. In §3, a solution procedure is derived.
Section 4 deals with implementation of the procedure and a solution algorithm is
developed. In §5, the scheme is tested for two cases for which analytical solutions are
available. Section 6 summarizes the study and offers concluding remarks.

2. Problem statement

The combined refraction-diffraction equation (Berkhoff 1976; Smith & Sprinks
1975) that describes the propagation of periodic, small-amplitude, surface gravity
waves over an arbitrarily varying, mild-sloped sea-bed is:

V-(CC, V@) +(C,/C) 0*p = 0, (1)
where ¢(x,y) is the complex surface elevation function, from which the wave height
can be estimated ; o is the wave frequency under consideration; C(z,y) is the phase

velocity (o/k); Cy(x,y) is the group velocity (do/0k); x(x,y) is the wavenumber
(=2mn/L), related to the local depth d(x,y) through the dispersion relation:

0? = gk tanh (kd). (2)

Instead of working with (1), it is convenient to work with the following wave
equation:

VD + K2 (x,y) @ =0 (3)
which is obtained from (1) through the transformation suggested by Radder (1979):
D = $(CC,)* and K= k*—V*CC,)"*/(CC,)°**. (4)

In this formulation, @ is a modified wave potential function and K is a modified
wavenumber. Also, a rectangular domain is chosen for demonstration. The method
can be easily applied to non-rectangular regions, with internal boundaries when
necessary, as shown later. The domain, coordinate axes, incident wave direction,
etc., are shown in figure 1.

The domain is discretized into finite-difference grids of size Az and Ay. If @} is used
to denote the grid-point value of the potential, standard discretization of (3) using
second-order finite-differences (for Ax = Ay) yields:

O+ DI+ D+ D] +[(K Ax)*—4] D] = 0. (5)

The conventional approach consists of writing such equations for all internal points
in the domain. Inclusion of boundary conditions gives additional equations, and the
resulting system of equations may be expressed in matrix form as:

[G1{P} = {}, (6)

where [@] is the system matrix, {®@} is the unknown vector (of the desired grid-point
values of the wave potential), and {f} is a vector that contains information from the
discretized boundary conditions, which have to be imposed along AC, BD, CD, and
AB. When the boundaries represent seawalls, coastlines, etc., the following condition
may be used (Berkhoff 1976; Kostense et al. 1986):

0D /om—iKad = 0, (7)
Proc. R. Soc. Lond. A (1993)
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Figure 1. Schematic of computational grid.

where n is the direction normal to the boundary and « is a reflection coefficient that
may have to be determined empirically. Incorporation of (7) into (6) is not difficult.
However, along open boundaries, a suitable boundary condition is not available. Our
goal is to devise a scheme for incorporating such boundaries in (6), and for
demonstration, we assume that all four boundaries in figure 1 are ‘open’ boundaries.
(Problems with other boundaries are also treated later,)

We assume that the sea outside the computational domain (denoted by 2’) is of
constant depth. Varying bathymetry, internal boundaries (such as structures,
islands, etc.) that cause scattering are assumed to be inside the computational region
(denoted by ). In €', therefore, equation (1) reduces to the Helmholtz equation

VB + K2 P =0, 8)

where K represents the wavenumber over the constant depth. The solution of (8) is
composed of two parts, the incident wave potential @' and the scattered wave
potential @5, i.e. _

&= o'+ 0", (9)
where Dl = A, exp[iK, rcos (0—0,)]. (10)

In (10), 4, and 6, are the amplitude and direction of the incident wave. @ is the
scattered wave potential that must satisfy (in addition to (8)) the radiation condition
at infinity :

\/(.Kcr)(ga;—ilfc)@S»O, K.r>1. (11)

The required @ is given by the following Fourier—Bessel series (Mei 1983):

o0

D = Hy(K,r)+ X H(K,7) (o, cosl O+ f3,5in16), (12)

=1
Proc. R. Soc. Lond. A (1993)
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where H,(K,r) is the Hankel function of the first kind and order I. The coefficients a;
and B, are, however, not known. Equation (12) does provide information regarding
the nature of the solution on the open boundary, though, and our objective is to
incorporate this information in the finite-difference model for €.

3. Solution methodology

Continuity of the solution along the open boundary requires:
o=¢; &,=0, onl, (13a, b)

where the subscript » denotes the normal derivative. Theoretically, using discretized
values for the terms on the left and analytical expressions for the terms on the right
should give additional equations (containing the unknown coefficients o, and £,).
These can be combined with the internal equations (5) and the resulting matrix can
be solved. In practice, however, in the numerical model (for £), the boundary
condition is satisfied only for the grid-point on I'. The number of additional
equations that these boundary points provide may be more or less than the actual
number of equations required, which depends on the number of terms that are
retained in the series (12). (For computational purposes, the series (12) has to be
truncated after m terms, depending on the convergence. Usually m has to be found
by trial-and-error.) The number m is typically far less than the number of boundary
grid-points leading to an over-determined system of equations. Increasing the terms
in series (12) to obtain an exact match between the number of equations and the
unknown coefficients is cumbersome; not only is an inordinately large number of
terms required, but the large magnitude of the high-order Hankel functions leads to
an ill-conditioned coefficient matrix.

This difficulty with meeting the matching criteria (13) directly can be eliminated
if we seek to obtain the coefficients «; and g, such that the following overall error
functional is minimized:

N 2
P z(a,._qu), (14)
=1

where j is a grid-point on I"and IV is the total number of points on it. Assuming that
the series (12) has been truncated after m terms, define vectors:

{n}" = {H,,H,cos0,H,co0s20,...,H, cosmf; H,sin0,H,sin20,..., H, sinmb}, (15)
{/"}Tz{0‘0?0‘19‘12:“'aam;ﬁl’ﬁw'“’ﬁm}' (16)

These vectors, each containing L = 2m+1 elements, represent the known and
unknown parts of (12). For convenience, the argument (K, r) of the Hankel functions
has been dropped in (15). Note that {A}*T is a function of the boundary grid
location j.

We can now write (9) as

D =P+ P = P +{h}" {u}. (17)
Minimizing F with respect to the constants to be determined,

OF Jou; =0, i=1,2,....L, (18)
Proc. R. Soc. Lond. A (1993)
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where u, represents the ith term in (16). Using (14) and (17) and performing the
differentiation for each w; leads to:

N N
z (dsj_dsj) (kl)j =0, X (P

i ¢]) (hZ)j = O’ ’
j=1 j=1
N N
X2 (D;—D;) (h); =0, X (D;—D;)(h); =0, (19)
Jj=1 Jj=1

where (%;); represents the ith term in (15) for the jth boundary point. Equations (19)
can be written concisely if we define the following matrices:

[C] = [¢y;] = [(B;);], dimension L x N, (20)

[A]=[C][C]* dimensionL x L (21)

and vectors (P} ={D}, D), ..., DL}, (22)
(@), = (D, D,,..., Dy}, (23)

where @] represents the value of the incident wave at the ith grid-point on the
boundary, and @, represents the desired numerical solution at this location. Using
(20)—(23) and (17), (19) becomes

[A{u} = [C]{®},— [C]{DY;. (24)
Solving (24) for {u}, we have
{w} = [R1 (D} —{D})), (25)

where [R] = [A]7! [(] is determined ahead of time. Note that {¢} cannot be directly
determined at this stage since {®} is not known. However, (13b) can now be used to
provide an additional criterion. Since {u} is a constant, (17) can easily be
differentiated; and using (25), the criterion (13b) gives:

D, =0, =D, +{h,} [R]({D}—{DP"}}, (26)
0H, 0H, cos @ 0H_ cosmfB OH,sinf 0H_  sinm®
where {k”}z{ﬁnho’ l'c)n ey man : Bn - man } (27)

Equation (26) is the desired Robbins-type condition on the open boundary for the
computational domain £ of a finite-difference model.

4. Implementation

The boundary condition (26) must now be adapted for use in a linear equation
system solver. To illustrate, we apply it to the open boundary shown by the dashed
line in figure 2, where the alphabet denotes a grid location. At point P, for example,
(@},), is determined on the basis of the given incident wave condition (analytically).
Similarly {A,}, can also be computed at the outset. At P, discretizing (26) yields:

(P, —D,)/As = (D), +{hy,}, [R] (D} —{P}). (28)

Similar application to other boundary points (like P’, etc.) results in a system of N
equations which may be written in matrix form as:

[STHP} = {Dlini] = { D} + [h], [R] (P} —{ D), (29)

where [£,] is the N x L matrix obtained by combining vectors such as (27) for each
boundary point, {®},, is the vector of internal points adjacent to I” (such as @,), and

Proc. R. Soc. Lond. A (1993)
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Figure 2. Definition sketch illustrating the location where boundary derivatives are computed
and for transferring boundary information into global equation.

S is a diagonal matrix containing terms such as 1/Ax, etc. The N linear equations (29)
can be combined with the internal equations (5) (and the equations for other types
of boundaries, e.g. those satisfying (7)), to obtain the final matrix equation (6).

The complete solution algorithm may be described as follows:

1. For each of the N grid points on the open boundary with grid coordinates
(I, J), define a serial two-dimensional array ID (K, 2), where 1 < K < N, such that ID
(K,1) =1 and ID (K, 2) = J for the Kth boundary point.

2. For each K,

(@) knowing I and J (or x and y) find corresponding r, 0,

(b) use (15) to determine the Kth column of [C] (equation 20),

(¢) determine Kth element of the incident wave vector {®@'}, using (10).

This results in the matrix [C] and vector {@'},.

3. Find [4] = [C][C]%, [A] ' and [R] = [A]7! [C]. Note that [4] is typically a small
matrix, its size being determined by the number of terms m retained in the series (12).
Inverting 4 presents no difficulty.

4. For each K, find derivatives [4,] and {®}}, as follows:

(@) The derivatives are computed at points such as P.

(b) Find the Kth row of [A,] by taking derivatives at P of the elements in vector
{h} defined in (15). This involves simple analytical differentiation. (See appendix.)

(¢) Find the Kth element of {®L} by analytical differentiation of (10). (See
appendix.)

5. Rewrite (29) as:

([B] = [SDA@}+ [SH{ Py = —{ Py} + [BHDY (30)

where [B] = [h,][R]. Compute [B] and the right-hand side vector {Q} = —{®L}+
[B1{®"}, which will eventually go into {f} of (6).

6. We now have to construct the final matrix equation (6). Let there be a total of
LT computational points (including all internal, open boundary, and other boundary
points). Let the coordinates of the Lth grid point be (Z,J).

(a) For all internal points, coefficients from (5) give the appropriate elements of
[G]. Similarly at closed boundaries, elements of [(/] can be obtained by discretizing
(7). It now remains to transfer the elements of the open boundary matrices (equation
(30)) into the appropriate locations in [('] and {f}. This is done as follows: Pick an
element B(N1, N2). Corresponding to N1, find /1 = ID (N1, 1) and J1 = ID (N1, 2). For

Proc. R. Soc. Lond. A (1993)



582 B. Xu and V. Panchang

I1 and J1, find the corresponding grid point number L1 (1 < L1 < L7'). Similarly for
N2, find L2. The element G(L1, L2) is then equal to B(V1,N2). If N1 = N2, however,
G(L1,L2) = B(N1,N2)—1/As (where 1/As arises from matrix [S]and As = Az or Ay).
The second term in (30) involves internal points adjacent to the boundary. Let L3
denote the location number of the appropriate internal point adjacent to L1. Then
G(L1,L3) =1/As.

(b) The elements of {¢)} also have to be transferred to {f}. The N1th element of {Q}
is equal to the L1th element of {f}.

7. Equation (6) can be solved by gaussian elimination or iterative schemes
(Panchang et al. 1991; Li & Anastasiou 1992).

5. Verification

To examine the ability of the method described above to correctly handle open
boundaries, two tests are performed. The first is the well-known problem of long
waves propagating around a circular island located on a paraboloidal shoal (Homma
1950; Jonsson et al. 1976). The second is an investigation of harbour resonance.

(@) Waves around an island

The bathymetry for this case is shown in figure 3. This problem has been solved
by Tsay & Liu (1987) and Houston (1981) by the finite-element method, using
approximately 2304 and 5280 elements respectively. The finite-elements lie in a
circular region covering the shoal.

We use a finite-difference grid (figure 4) containing only 31 x 31 grid points. The
boundary condition along the island is given by (7) with a = 0. These boundary
derivatives, which are computed numerically, require the artificial inclusion in the
computational module of some points which are really on the island. Hence, with the
coarse resolution used here the circular island is not as well represented as in the
finite-element model. The coarse resolution also affects the computation of K
(equation (4)) for long waves at grid points along the island boundary; a depth equal
to h, was assumed to exist at just inside the island to facilitate the computation of
the V*(CC,)"® term in (4). Similarly, the resolution also affects the estimation of K2,
which is discontinuous along the outer shoal boundary and influences the numerical
results.

The 946 linear equations resulting from the procedure described in §4 were solved
by gaussian elimination. Three sets of model results are shown in Figure 5 for wave
periods 7'= 240 s, 410 s, and 480 s in the form of contour plots of the normalized
wave height. Analytical solutions for this problem derived by Homma (1950), are
also computed and shown. (The island appears as an octagon due to the finite-
difference representation; see figure 4.) The model results compare extremely well
with the analytical solutions. While there are some minor differences, the overall
patterns exhibit no spurious reflection from the open boundaries. The differences
may be attributed to the coarse grid and inexact representations for the island
boundary and for the modified wave number.

(b) Wave propagation in a rectangular harbour

The second test of the solution method described in §4 involves the harbour
resonance problem. This has become a standard test-case for many wave models
(Chen & Houston 1987; Madsen & Larsen 1987; Panchang et al. 1991), and also
exemplifies the difficulty with open boundaries in finite-difference models. The
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Figure 4. Finite-difference grid for wave propagation on island/shoal bathymetry.

domain consists of a rectangular harbour of constant depth surrounded by the open
ocean (figure 6). To simulate the open sea with finite-difference models, Madsen &
Larsen (1987) and Panchang et al. (1991) have included large rectangular regions
(150 m x 30 m) outside the harbour within the computational domain, which
contained over 4500 grids. Madsen & Larsen (1987) found that decreasing the size of
the outer basin degraded their results. Using a different open boundary condition,
Panchang et al. (1991) had to rely on artificial reflection coefficients to tune their
model.

Here a finite-difference grid is constructed with a much smaller outer basin, 12 m
wide and approximately 7m long. However, for harbour problems, a slight
modification to the procedure described in §4 is required, since the coastline outside
the computational domain can create a reflected wave. The solution for the constant
depth region can thus be treated as a combination of incident waves, reflected waves,
and scattered waves, i.e. in Q’

D =P + PR+ @5 = QIR+ @S, (31)
@™ the sum of the incident and reflected waves, is given by:
PR = A exp[iK,rcos (0—0,)]+A4,exp[iK, rcos (0+0,)], (32)

Proc. R. Soc. Lond. A (1993)
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Figure 5. Wave height comparisons; finite-difference (left) and analytical (right).
Period = 240 s (top); 410 s (middle); 480 s (bottom).

where, for simplicity, the coastline outside the computational domain has been
assumed to be straight along the x-axis and fully reflecting. Requiring that

0®/n=0 along 6O=0,m, (33)
the scattered wave potential (equation (12)) now reduces simply to
D5 =3 o, H(K,7)coslb. (34)
=0

Proc. R. Soc. Lond. A (1993)
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Figure 8. Wave height comparison along central vertical axis of symmetry. (Dashed line finite-
elements; solid line finite-differences. The curves are indistinguishable for KL = 2.74). o, KL =
1.48; 0, KL = 4.27; o, KL = 2.74.

The procedure described in §§3 and 4 can now be implemented by simply replacing
the original @' by ®'® and (12) by (34).

Solutions are obtained using only about 800 grids of size Az = 0.604 m and Ay =
0.778 m. For several wave periods, the resulting wave heights at the middle of the
back wall are shown in figure 7. The analytical solution from Mei (1983) is also shown
and the comparison is excellent. Further results along the central vertical axis of
symmetry are shown in figure 8 for three cases. These include the results of another
finite-element model; this model uses the conventional semicircular region to
separate the computational region from the infinite superelement, and as noted in §1,
can handle the radiation condition at infinity naturally with the variational
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principle. The comparison in figure 8 is quite good. Some differences may be seen,
however, these are attributed to the coarse resolution of the finite-element model.
(The same grid as that shown in Chen & Houston (1987) was used.) Also the results
near the resonant peaks are generally difficult to simulate perfectly (Dong & Al-
Mashouk 1989), and minor differences in intermodel comparison are to be expected.
The important point is that both models show essentially the same features and the
new method of treating the radiation condition in finite-difference models creates no
spurious reflections, even though the outer basin is extremely small.

6. Summary and conclusions

The treatment of open boundaries in wave models is generally considered a
difficult problem. In the context of finite-difference elliptic models, the approach
taken so far has been to approximate the boundary condition (which can cause
spurious oscillations) or to enlarge the domain well beyond the region of interest
(which increases the computational effort). While these methods may sometimes
work satisfactorily, there is often no guarantee of their success ahead of time.

A method has therefore been devised to incorporate the radiation condition at
infinity in a finite-difference model. (This has hitherto been possible only with finite-
element models.) The method is based on using a Fourier—Bessel series to describe the
scattered wave potential in the open ocean. However, matching this to the internal
solutions along the contour I' can be problematic. We therefore suggest an
alternative criterion based on minimizing the overall error functional along I". An
appropriate algorithm to incorporate this treatment of the open boundaries into the
standard matrix equation is also described.

The procedure is verified using two standard test-cases that involved both long
and short waves. Compared with previous works, satisfactory solutions are obtained
with far fewer grids and/or with much smaller domains. No difficulty with spurious
reflections was encountered and the results matched the analytical solutions very
well. This ‘exact’ treatment of open boundaries can thus lead not only to improved
solutions, but can also save computational effort. It can handle harbour and other
coastal domains as well as open ocean problems.

Partial support for this work was received from the Maine Sea Grant College Program (National
Oceanic & Atmospheric Administration), Grant NA16RG0157-01, and from the University of
Maine Centre for Marine Studies. IBM3090 computing facilities were provided by the University
of Maine.

Appendix

Here we obtain the derivatives of the vector {A} and @' along the outward normal
direction on the open boundary. For illustration, we assume that the domain consists
of four open boundaries (see figure 1). As mentioned in the text, the derivatives are
computed on the dashed lines B'D’, D'C’, ’A” and A’B’.

On B’D’, the out-normal derivatives of @' is

Q?LI = a;dslco B—a—dzsinﬁ
m o VT a6
= id, K exp [iKr cos (0 — 6,)] [cos (6 — 6,) cos O +sin (8 — ;) sin 6]
= id K cos 6, exp [iKr cos (0 —6,)]. (A1)
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Similarly, we can find derivatives of terms in vector {h} on B'D’ as follows:

O(h); _ 0H,_,(Kr)cos(j—1)6
om on
= ((j—1)/r)H;_,(Kr)cos (j—2) 0 —KH;(Kr)cos (j—1)fcos§, when j<m+1,
(A2)

O(h); _ OH(Kr)sinf
on omn
= (¢/r)H,(Kr)sin (1 —1) 0 —KH,, ,(Kr)sin6 cos 0,
when j >m+1 and i=j—(m+1). (A3)

Similarly the following results are obtained for the derivatives on other three sides.
On D'C’:

0!
n
o(h); _ 0H,;_;(Kr)cos(j—1)0
on on
=—((j—1)/r)H,_,(Kr)sin (j—2) 60— KH;(Kr)cos (j—1) fsin b,
when j <m+1, (Ab)

=14, K sin 6, exp [iKr cos (0 —6,)], (A 4)

o(h); _ OH,(Kr)sin 7,0

Gn] = n (¢/ryH(Kr)cos (t—1)0—KH,,,(Kr)sinifsin 0,
when j >m+1 and i=j—(m+1). (AG6)
On C°A7 0P /on = —id, K cos 0, exp [iKr cos (6 —6,)], (A7)
O(h); _ 0H,;_,(Kr)cos(j—1)6
on on
((j—1)/r)H;_,(Kr)cos (j—2) 0+ KH,(Kr) cos (j—1)fcosf, whenj<m+1,
(A 8)
O(h); _ 0H,(Kr)sinif
on on
—(¢/r)H(Kr)sin (1 —1) 0+ KH, ,(Kr)sinif cos 6,
when j >m+1 and i=j—(m+1). (A9)
On A'B' 0P /an = —id, K sin 6, exp [1 Kr cos (6 —6,)], (A 10)
O(h); _ 0H;_,(Kr)cos(j—1)6
on on

=J;1H, 1(Kr)sin (j—2) 0+ KH(Kr)cos (j—1)fsinf, whenj<m+1,

(A 11)
O(h); _ OH,(Kr)sini0
on on
—(¢/r)H (Kr)cos (1 —1)0+KH, ,(Kr)sinifsin 6,
when j>m+1 and i=j—(m+1). (A12)
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