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EXTERIOR REFLECTIONS IN ELLIPTIC HARBOR WAVE MODELS

By Bingyi Xu,' Student Member, ASCE, Vijay Panchang,” Member, ASCE,
and Zeki Demirbilek,” Member, ASCE

ABSTRACT: Traditional elliptic harbor wave models are based on the assumptions that the exterior sea region
(i.e. the region outside the computational grid) is of constant depth and that the exterior coastlines are collinear
and fully reflecting. This paper demonstrates that for most coastal regions, where these assumptions are generally
not true, their effect on model results is substantial. This leads to unreliable simulations. Enlarging the model
domain to overcome their effects is cumbersome and often prohibitive. To overcome these difficulties, the use
of parabolic approximations of the mild-slope wave equation as open boundary conditions is explored. Suitable
parabolic equations are derived and interfaced with an elliptic finite-element model. Since the parabolic approx-
imation does not describe wave scattering as rigorously as the traditional method, the new model is tested against
analytical and other solutions for cases where scattering is extensive. Errors resulting from the parabolic ap-
proximation are found to be extremely small. Further model tests show that for the generally realistic case where
exterior reflection coefficients are less than unity, the new method requires considerably smaller domains than
the traditional method, resuiting in reduced modeling effort. The model is also applied to Toothacher Bay, Maine,

and the use of the parabolic boundary conditions eliminates many spurious features in the simulation.

INTRODUCTION

The solution of the two-dimensional elliptic mild-slope
wave equation is a well-accepted method for modeling surface
gravity waves in harbors (Chen and Houston 1987; Chen
1990; Xu and Panchang 1993; Mei 1983; Berkhoff 1976; Kos-
tense et al. 1986; Tsay and Liu 1983). This equation may be
written as

V- (CC,Vd) + % b =0 e))

where &(x, y) = complex surface elevation function, from
which the wave height can be estimated; o = wave frequency
under consideration; C(x, y) = phase velocity = o/k; C,(x, y)
= group velocity = dg/dk; k(x, y) = wave number (=27/L),
related to the local depth d(x, y) through the dispersion relation

o’ = gk tanh(kd) 2

Eq. (1) is usually solved by numerical techniques after sepa-
rating the overall domain into two regions (see Fig. 1): the
interior harbor area (), which is usually covered by a finite-
element or finite-difference grid, and the exterior sea {)’ which
is often called the ‘‘superelement.’’ In the exterior, the wave-
field &, consists of the specified ipcident wavefield &;, re-
flected wavefield ¢,, and the scattered wavefield &;. For the
numerical solution, analytical descriptions of all three are re-
quired. For clarity, these are presented in Appendix I. The
solutions in the interior and the exterior are then matched and
the overall wavefield determined via a numerical algorithm
(Mei 1983; Xu and Panchang 1993).

The scattered wavefield ¢, that stems from the existence of
the harbor is of particular interest. The classical representation
of &, is

&, = O, Hu(kr)(A, cos nb + B, sin nb) 3)
n=0
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where (r, 6) = location of a point in polar coordinates; k =
wave number; H, = Hankel function of the first kind and order
n; and A, and B, = unknown coefficients. (It may be noted
that an open boundary of semicircular shape, while not essen-
tial, greatly facilitates the application of (3) in finite-element
models.] Although the classical method results in (3) which
rigorously satisfies the governing (1) and the Sommerfeld ra-
diation condition, it has three limitations: (1) The exterior re-
gion must have a constant depth; (2) the exterior coastlines
A,D, and A,D, must be collinear; and (3) the exterior coast-
lines A, D, and A, D, must be fully reflecting. (This is proved
in Appendix 1.) These requirements usually cannot be met for
most coastal domains where the exterior geometry varies ar-
bitrarily, and the unrealistic bathymetric representation used
perforce by the modeler invariably has an adverse influence
on the solution. Limitation (3) is particularly troublesome; an
example is provided in Fig. 2, where the results of applying a
finite-element model (called*‘CGWAVE’’ and described later)
to Toothacher Bay, Maine, are shown. While these results con-
stitute the correct solution of the problem solved, the simula-
tion yields extremely large amplification factors and rapid var-
iations in the wave pattern in the outer regions of the domain.
These effects, which are primarily due to a fully reflected
wavefield generated from the exterior coastline, would clearly
be spurious in case of exterior coastlines with low reflectivity.
We have also observed them in several harbor simulations
while using the model HARBD (Chen and Houston 1987).
One may of course enlarge the interior region in the hope that
these effects do not contaminate the results in the area of in-
terest; however, there is no guarantee that these effects are
confined to specific regions. In addition, the extra memory
requirements and grid generation for a larger domain are usu-

Peu=0it0,+0, o :
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FIG. 1. Harbor Wave Model Domain
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FIG. 2. Model Simulation in Toothacher Bay via Traditional Ap-
proach (20-s Waves Incident from Top—See Also Figs. 12 and
13): (a) Amplification Factors; (b) Cosine of Phase Angle

ally exceedingly demanding. Use of (3) thus renders the ap-
plication of harbor wave models problematic.

To overcome these difficulties, Panchang et al. (1993) have
described a procedure that requires the exterior domain to be
suitably divided into a finite number of regions of constant
depths. A boundary integral equation is then developed for
each of these exterior regions using the appropriate Green's
function. The boundary element formulations for these regions
are then matched with each other along the interfaces and with
the finite-element network in the model interior to obtain the
solution. It was found, however, that this type of model is
extremely cumbersome to code and construct for general iin-
plementation. Other difficulties may also be expected if mech-
anisms such as dissipation, wave-current interaction, etc. are
to be introduced into the governing equation. Chen (1990) also
has suggested discretizing the exterior domain into a finite
number of radial ‘‘infinite elements’’ with a prespecified shape
function in each element. However, this shape function is en-
tirely dependent on the farfield approximation for the Hankel
functions, suggesting that a fairly large computational domain
is still needed. Also, no detailed comparisons for the case of

low exterior reflectivities have been provided to assess the
advantages of this method.

In this paper we develop an alternative method for dealing
with the open boundary of elliptic wave models so that the
case of arbitrary reflections from straight exterior coastlines
can be handled. Although this strictly eliminates limitation (3)
of the classical method, exterior coastlines of arbitrary shape
may also be permitted [i.e. limitation (2)] if they have low
reflectivity. The approach is based on the strategy originally
proposed by Kirby (1989) in the context of rectangular finite-
difference domains studied by Panchang et al. (1988); it in-
volves the use of the ‘‘parabolic approximation’’ of the mild-
slope wave equation as the open boundary condition for the
scattered waves. The parabolic approximation allows only for-
ward propagation with weak lateral scattering, i.e. it can ac-
commodate waves exiting the domain through a limited ap-
erture of approximately 45° about a dominant direction.
However, the dominant direction of the scattered outgoing
waves is not known a priori; what is known is that they must
propagate radially out to infinity to satisfy the Sommerfeld
radiation condition. To tackle this situation within the artifice
of the parabolic approximations, we may reasonably select a
scattering center [e.g. by assuming that most of the scattering
originates within the harbor itself (region {1) and/or by a group
of scattering structures, islands, etc.] and use a circular seg-
ment around it as the open boundary. The dominant direction
of the outgoing waves may then be assumed to be largely the-
radial direction at each point of the open boundary. Accord-
ingly, parabolic approximations in radial coordinates are de-
rived and applied along a circular segment that is used to sep-
arate the interior computational domain from the exterior sea.

This approach thus represents a compromise between the
rigor of the conventional method represented by (3) and its
limitations. Eq. (3) is rigorous as far as wave scattering direc-
tions are concerned since it is a complete solution of (1). How-
ever, it places unrealistic requirements on the exterior bathy-
metric geometry that adversely impact model solutions. The
proposed approach is somewhat approximate insofar as the
scattered wave angles are concerned: all waves scattered from
the region {) may not be radially incident on the open bound-
ary. However, the treatment of the scattered waves in this ap-
proach requires no assumptions regarding the bathymetry and
allows the modeler greater flexibility while tackling realistic
domains. In addition, it may be hoped that the approximations
will have limited negative influence since they pertain only to
one component of the overall exterior wavefield (viz. the scat-
tered potential).

The layout of the paper is as follows. In the next section,
parabolic equations appropriate for use with the elliptic wave
model are developed. The following section provides the var-
iational formulation used to construct a finite-element model
with the parabolic boundary conditions. Verification of this
procedure and comparison with the conventional method are
then described. Finally, concluding remarks are provided.

PARABOLIC APPROXIMATIONS FOR OPEN
BOUNDARY CONDITION

To obtain parabolic approximations of the mild-slope wave
equation, (1), it is helpful to first transform it as follows (Rad-
der 1979):

Vi + K*® =0 )
via the relations

v\/CC, )
VG,

Parabolic approximations for (4) in non-Cartesian (nonorthog-

®=\VCC,d and K*=#k>-—
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onal) coordinate systems have been studied by Tsay and Liu
{1982), Isobe (1986), Liu and Boissevain (1988), and Kirby
(1988). However, their developments are not directly appli-
cable to the problem described previously. To obtain a para-
bolic equation suitable for application along a circular seg-
ment, we use a polar coordinate system; (4) then becomes:

1
<I>,,+;(I>,+%d>ee+l<2d>=0 ©)

(Our goal is to derive a parabolic approximation only for the
scattered waves which originate from the interior. It must
therefore be noted that the following development pertains to
b.)

As stated earlier, (3) is a rigorous solution of (6) for K =k
= constant; its far-field approximation is

oo 2 . ’ 1\
&(r, 0) ~ ; A,(8) \/;orexp {t [kor - (n + 5) 3]} )]

where k, refers to the constant depth in the exterior. Eq. (7)
also completely satisfies the Sommerfeld radiation condition
(as shown in Appendix I). However, it is accompanied by lim-
itations on the exterior geometry. In the spirit of retaining the
advantages (and hence the form) of (7) to the extent possible,
for more general application, we choose the following solu-
tion:

1

Vkor

where k, may be suitably defined as some characteristic wave
number along the open boundary. A parabolic approximation
may now be derived in the usual way. Substituting (8) into
(6), we have

O(r, 8) = V(r, 0)

e 8)

v, + 2ik¥, + iz Voo + (Kz— ki + f—;) v=0 (9
r r

The desired parabolic approximation may be obtained by drop-
ping the ¥,, term (e.g. Kirby et al. 1994), i.e. diffraction ef-
fects in the r-direction are assumed to be weak. This yields
[in conjunction with (5) and (8)]

&, + pd + gdee =0 (10)
where

_ K + k2r? + ikgr + 1/4
p= 2ikor?

and (an

1= 2ikor?
[In (10), local bathymetric variations, i.e. 3V CC,/or and
8V CC,/30, along the semicircle are ignored.] Eq. (10) may
also be obtained via the splitting matrix method (Radder
1979).

It must be noted that the parabolic approximation (10) is
not unique; indeed, there are several ways to derive such ap-
proximations and they result in different equations (Kirby
1986a,b; Kirby et al. 1994). The prior development is essen-
tially based on the assumption (8), which can be justified only
on heuristic grounds; the scattered waves propagate out in the
r-direction [as indicated by exp{ik,r)] and decrease in ampli-
tude as r~¥2 (as required by energy conservation). While these
properties are strictly true only in the far field, they are desir-
able in the near field (just beyond the open boundary). They
are hence retained in (8), and variations from the exact form
(7) are assumed to be contained only in the function Y(r, 8).
Thus (8) may be viewed as a more general form of (7) for the
purpose of developing a radiation boundary condition. Para-
bolic approximations similar to (10) have been derived re-
cently by Kirby et al. (1994) for the comparable case of waves

propagating outwards between two diverging breakwaters. Un-
like our formulation (8) and that of Kirby et al. (1994), the
shape functions used by Chen (1990) for his radially diverging
infinite elements do not contain the function W(r, 8). They are
thus strictly valid only in the farfield, in terms of r. Also, Chen
(1990) has assumed that ¢ varies linearly in the 6-direction
over an infinite element. This implies that ¢ = O within the
element, which is not very satisfying as r increases in the
continuously expanding infinite element, since the theoretical
requirement from (6) is b = —n’d (resulting from separation
of variables).

Alternatively, the parabolic approximation may be based on
a more conventional assumption. In Cartesian models, this as-
sumption is

® = W(x, y)exp(ikox)

for waves propagating largely in the x-direction. The analo-
gous form for our purpose would be

@ = V(r, O)explikyr) 12)

for waves propagating largely in the r-direction. The parabolic
approximation that results is again (10) with

K+ K 1

=1 T 2iker 1= 70 + 2ikor) 13

While it is difficult to rigorously establish the superiority of
one parabolic equation over the other, it would intuitively ap-
pear that (10) and (11) are preferable because (8) explicitly
incorporates the desired radiation properties.

FINITE-ELEMENT MODEL DEVELOPMENT

To solve (1), a finite-element grid is constructed within the
model interior encompassed by a semicircular open boundary
and the coastal boundaries. In the exterior, the total potential
.« may be written as

d)exl = ¢i + ¢r + ¢: = ¢0 + d)s (14)

where &, = (specified) incident potential = A; explikr cos(6 —
8)1; &, = reflected potential due to the exterior coastline, which
may be estimated as K. A, exp[ikr cos(8 + 6,)] if this coastline
is collinear with the x-axis and has a reflection coefficient
K..; and &, = scattered potential due to the harbor.
Along the (other solid) boundary B we have the following

boundary condition:

ad ik(l — K,)

rols ad where a = 1+ K) (15)
where the real quantity K, denotes the (specified) reflection
coefficient. Along the open boundary I" we use (10) as the
boundary condition for the scattered waves. Matching the po-
tential and its normal derivative along I' and using the para-
bolic open boundary condition (10), we have

and

B 30”

30 _odo 9% _ 3do 74,
on_ or * or ar (p‘bl i ) am

Using (16) to eliminate ¢, yields

ad R
—_— = — g — + 18
on rd —q 20° T8 (18)
where
3o 8o
=— 4 + 19
8=, pdo + g T (19)
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Eg. (1) is to be solved in the model interior using the bound-
ary conditions (15) and (18). To use finite elements it is nec-
essary to develop the equivalent variational problem on the
appropriate functional. While this has been done for the con-
ventional method using (3) (Mei 1983), the presence of the
higher-order tangential derivative in (18) renders the devel-
opment more complicated for the new method. For brevity we
avoid this development and state that the desired functional is

1 z_Cs 242
=fL§[ccg(v¢) —Ca¢]dA

1 N I R ad\
—Liaccgcb ds frzcc, [2g¢ pd +q<ae)]ds

1 1
+ |z aCCuqr’d*| + (= 2¢?
<2 * 4 ¢ )nhﬁ (2 aCCqu ¢ )MAZ (20)

where the last two terms are evaluated at the end points (A;
and A,) of the open boundary. It can be demonstrated that the
variation of J is

o] [
+ f 8$CC, (%‘S - a¢> d

f&bCC <¢+p¢+q%— )ds

[8¢Cngr (@ - a¢>]
% _
(an “4’)].(,,1 @)

It is clear that 8J will be zero if and only if, first, ¢ satisfies
the mild-slope equation in 2, and second, ¢ satisfies the
boundary conditions on both B and T.

If wave propagation around offshore islands or structures is
to be considered in a domain with no other coastal boundaries
(e.g. see the following model verification section), a full circle
can be used as the open boundary I'. It can then be shown
that the functional in this case reduces to the first three terms
of (10).

The finite-element solution now follows in the usual way
“(Mei 1983). In this study, simple triangular elements were used
in conjunction with (20). Calculating the variation of J then
leads to a system of linear equations (i.e. {A]{ $} = {f}) which
is typically extremely large and hence difficult to solve. Iter-
ative conjugate-gradient techniques developed by Panchang et
al. (1991) were used to alleviate these difficulties. In fact, these
techniques were found to be far more efficient in the present
finite-element runs than for the finite-difference studies of Xu
and Panchang (1993) and Panchang et al. (1991). Li (1994)

(CC,Vd) + & ¢]

- |:8<1>CC‘,,qr2

TABLE 1. Comparison of lterative Schemes Developed by
Panchang et al. (1991) and Li (1994) (Residuai Error =107°)

CPU
lterations (s) CPU
No. of | (Panchang | iterations | (Panchang (s)
No. |equations |et al. 1991)] (Li 1994) | et al. 1991) ]| (Li 1994)
{1 (2 (3) 4) (5) (6)

1 660 920 160 323 55
2 1,779 2,000 400 204.0 40.0
3 2,943 2,400 700 412.0 118.0
4 3,605 3,100 600 659.0 125.0
5 6,256 4,100 3,200 1,284.1 973.8

has recently suggested modifications to the iterative schemes
of Panchang et al. (1991) to enhance convergence. These were
also investigated for a rectangular harbor of varying size (cases
1-4 in Table 1) and for Toothacher Bay (case 5 in Table 1).
Although these modifications resulted in faster convergence,
it was noticed that unlike the basic procedures of Panchang
et al. (1991), they do-not converge to a solution monotonically.
Instead, the residual error decreases in an oscillatory manner
as the iterations proceed. Also, the gain in CPU time varies
from case to case and appears to be problem-specific. A model
(called CGWAVE) was developed using these iterative meth-
ods and interfaced with the grid-generator associated with the
““FASTTABS’’ flow model (Jones and Richards 1992). These
features enabled rapid simulations on domains containing sev-
eral thousand triangular grids of varying size (based on the
desired wave-length resolution). Two versions of the model,
with the open boundary treated according to the traditional
approach, (3), and according to the parabolic approximations,
(10), (11), and (13), were constructed to facilitate comparison.

MODEL VERIFICATION

To verify the new approach, the finite-element model
CGWAVE was applied to two well-known test cases. The first
was a simulation of wave propagation around a circular island
situated on a paraboloidal shoal surrounded by a sea of con-
stant depth (Fig. 3). This is a particularly rigorous test case
for the new method, since analytical solutions for long waves
(Homma 1950; Jonsson et al. 1976) indicate extensive scat-
tering in all directions. Hitherto elliptic models have used the
rigorous representation (3) to simulate such scattering (Xu and
Panchang 1993; Houston 1981; Tsay and Lui 1983). Com-
pared with these models, the new method relaxes the treatment
of the scattered waves (to attain greater versatility), and the
analytical solutions facilitate an examination of the effects of
this relaxation.

A circular open boundary was placed at a distance of 0.1L
from the toe of the shoal, where L = incident wavelength. A
triangular finite-element grid was constructed with the size of
the triangles varying with the water depth; a resolution of ap-
proximately eight grids per (local) wavelength was used. For
a wave period of T = 240 s, this resulted in 609 linear equa-
tions. Modeled wave heights using (11) and (13) on the open
boundary were essentially identical and are shown in the bot-
tom half of Fig. 4. For comparison, the analytical results are
shown in the top of Fig. 4. [CGWAVE results on the same
grid using the rigorous procedure (3) were also obtained and
found to be indistinguishable from the top of Fig. 4.] The new
method reproduces the analytical solutions extremely well.
Also, oscillations indicating artificial reflections from the open
boundary are notably absent. Two other wave periods consid-
ered by Jonsson et al. (1976) were also modeled: T = 410 s
and T = 480 s. As before, the results showed exceedingly small
errors, and are hence not shown. These solutions are remark-
able in view of the proximity of the open boundary to the
island, and suggest that the new boundary conditions can ac-
commodate the scattered waves satisfactorily.

The second test case concerns harbor problems, and the fre-

INCIDENT WAVE
—

LN__ N

r, =10km
1y = 30 km
h, =0.444 km
hy=4 km

U L oy N

FIG. 3. Bathymetry for Paraboloidal Shoal and Circular Island
(after Jonsson et al. 1976)
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FIG. 4. Amplification Factors for Waves Incident from Left
{Due to Symmetry, Results Only in Half Domain Are Shown:
Top—Traditional Approach and Analytical Solutions (Results
Nearly Identical); Bottom — Parabolic Boundary Conditions [Re-
sults Nearly Identical for (11) and (13)]}

0i

— )
_ —  Incident —>x
- ~ Vzavas

L SO 35 0m

Y I v

FIG. 5. Rectangular Harbor Model Domain

quently used rectangular harbor was considered (Fig. 5). With
full reflection on all boundaries, the analytical resonance curve
(Mei 1983) for the center of the back wall shows two peaks,
corresponding to wave periods of approximately 11.1 s and
5.4 s, respectively. Since these resonant peaks are often diffi-
cult to simulate properly (Dong and Al-Mashouk 1989; Mad-
sen and Larsen 1987; Panchang et al. 1991; Chen 1990), we
will discuss results for these periods.

CGWAVE model results using the conventional and new
methods were obtained for exterior reflectivities of 1 and 0.5.
For convenience, the same reflectivities were assigned to the
interior boundaries as well. For full reflection on all bounda-
ries, the conventional method (3) is theoretically correct re-
gardless of the location of the open boundary; its solution

along section AB (marked in Fig. 5) is shown in Fig. 6(a, b)
for a wave period T = 11.1 s. For the new method, however,
the solution may be influenced by the location of the open
boundary; it may be expected that scattering errors along sec-
tion AB will diminish as the semicircle is placed far away
from the harbor. This is borne out by Fig. 6(a and b), which
shows the results obtained with (11) and (13), respectively, for
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FIG. 6. Comparison of Amplification Factors, Fully Reflecting
Boundaries, T = 11.1 s: (a) Traditional Approach versus Para-
bolic Boundary Conditions, (11); (b) Traditional Approach ver-
sus Parabolic Boundary Conditions, (13)
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FIG. 7. Comparison of Amplification Factor, Fully Reflecting
Boundarles, T = 5.4 s: (a) Traditional Approach versus a Para-
bolic Boundary Conditions, (11); (b} Traditional Approach ver-
sus Parabolic Boundary Conditions, (13)
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FIG. 8. Error in Amplification Factor at “B’’: True Solution As-
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FIG. 9. Maximum Error in Amplification Factor along AB, T =
11.1 s: (a) Incident Wave Angle = 0°; (b) Incident Wave Angle =
450

domains of various sizes. While the expected convergence to-
wards the conventional solution occurs for both methods, use
of (11) is clearly superior. It is again remarkable, however,
that even with R/L as small as 0.2, the solutions of the new
methods are very close to the conventional solution. Similar
results were obtained for 7 = 5.4 s, as shown in Fig. 7(a, b).

Since most realistic coastal domains do not have fully re-
flecting exterior boundaries (as specified in the preceding par-
agraph), we also consider the case of the rectangular harbor
(Fig. 5) with a reflection coefficient = 0.5 everywhere. The
conventional method can be expected to yield reliable solu-
tions only if R is sufficiently large so as not to influence the
results at the region of interest (assumed here to be the dotted
subdomain (), in Fig. 5). To obtain such a solution, 20 finite-
element runs on domains of increasing size were made in the
range 0.1 < R/L < 2. The number of nodes varied from about
130 for the smallest domain to about 2,000 for the largest
domain. It was found that the modeled wave heights in £}, did
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FIG. 10. Maximum Error in Amplification Factor along AB, T=
5.4 s: (a) Incident Wave Angle = 0°; (b) Incident Wave Angle = 45°

FIG. 11. Toothacher Bay Bathymetry

not converge monotonically as R increased. Instead, they os-
cillated, and the oscillations became smaller with increasing
R. Extremely large domains were required to completely elim-
inate these oscillations, as shown in Fig. 8. For R/L > 1.6
(approximately), the oscillations were generally smaller than
5%. The ‘‘true’’ solution was therefore constructed by aver-
aging the results at each grid point in , for the five largest
model domains. Compared with this true result, the maximum
errors in the wave height at any point in £}, obtained from the
conventional model using domains of varying sizes are shown
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FIG. 12. Toothacher Bay Model Grid

in Fig. 9(a, b) for T = 11.1 s and angles of incidence = 0° and
45°, For comparison, maximum errors arising from the use of
(11) and (13) are also shown in Fig. 9. It is clear that for a
domain of a given size, the new method results in small errors,
which are also generally much smaller than the errors stem-
ming from the traditional approach. Also, these errors show
far less sensitivity to R/L than the fluctuating errors with the
traditional approach. These conclusions are reinforced by sim-
ilar observations for T = 5.4 s; see Fig. 10(a, b).

Wave propagation in Toothacher Bay was also simulated.
The bathymetry and the model grid are shown in Figs. 11 and
12. More than 12,000 elements were used with a resolution of
approximately L/7 (L = local wavelength) for a period of T =
20 s. The results of the traditional method were discussed ear-
lier in the introduction (see Fig. 2). Wave heights at four lo-
cations marked, A, B, C, and D in Fig. 11 obtained by using
the parabolic boundary conditions were compared with those
obtained by the traditional approach. The differences were sig-
nificant: 34%, 19%, 12%, and 7%, respectively. This shows
that the influence of the traditional boundary conditions extend
into the domain of interest. This influence is often even
greater, and varies with angle of incidence and reflection co-
efficients along the boundaries. The overall results of the new
method are shown in Fig. 13. These show a marked improve-
ment in the quality compared with the simulations resulting
from the traditional method which were shown earlier in Fig,
2. The parabolic boundary conditions are effective in elimi-
nating the patches of large amplification factors resulting from
the assumption of full exterior reflection in the traditional
method. The phase pattern also shows a far more orderly pat-
tern.

CONCLUDING REMARKS

Traditional elliptic harbor wave models make certain as-
sumptions regarding the exterior bathymetry to achieve a so-
lution. When these assumptions are not met in practice (as is
usually the case), model results often show a spurious and
chaotic pattern with large waves, indicating that the effect of
these assumptions cannot be ignored. Enlarging the computa-
tional domain to overcome these effects in the region of in-
terest is usually not a viable option.

To overcome these difficulties, we have explored the use of
parabolic approximations as open boundary conditions. This
was first suggested by Kirby (1989) in the context of finite-
difference rectangular domain models. In the present paper,

FIG. 13. Model Simulation in Toothacher Bay Using Parabolic
Boundary Conditions: (a) Amplification Factors; (b) Cosine of
Phase Angle

we have developed parabolic approximations in polar coordi-
nates that are suitable for use as boundary conditions in elliptic
finite-element models. The appropriate functional was devel-
oped to accommodate the parabolic boundary conditions in the
solution of the mild-slope equation by the finite-element
method. This functional was used in conjunction with the it-
erative techniques of Panchang et al. (1991) and Li (1994) and
the grid-generator of Jones and Richards (1992) to construct
a finite-element harbor wave model.

While the traditional method describes wave scattering com-
pletely (as long as the assumptions regarding the exterior ge-
ometry are met), the new boundary conditions that rely on
parabolic approximations are limited in their ability to describe
the scattered waves in all directions. The model was thereforc
tested against analytical solutions for the case of wave prop-
agation around a circular island situated on a paraboloidal
shoal. Since this bathymetry causes extensive scattering in all
directions for long waves, it constitutes a rigorous test case
for the parabolic boundary conditions. The results were found
to be virtually identical to the analytical solutions. Further, the
new method was compared with the classical method for a

124 / JOURNAL OF WATERWAY, PORT, COASTAL, AND OCEAN ENGINEERING / MAY/JUNE 1996



rectangular harbor with fully reflecting walls (for which the
latter method is rigorously correct). It was found that the mod-
eled wavefield in the harbor was unaffected by the parabolic
approximations even when the open boundary was placed
quite close to the area of interest (viz. R/L = 0.2 was found
to be adequate). These tests suggest that the errors accruing
from the parabolic boundary conditions are very small.

The new method was then applied to the more realistic case
of partial reflection along the exterior boundary. For this case,
the traditional method is not strictly applicable and a modeler
would usually hope to obtain a reliable result by placing the
open boundary very far from the area of interest. It was found
that the results in this area ({),) depend significantly on the
location of the open boundary, and even with R/L > 4, com-
plete convergence to the final solution was not obtained. This
is partly due to the fact that the effects of full exterior reflec-
tion are not necessarily confined to the outer areas of {); rather,
they are felt, to varying degrees, over all of the computational
domain. The new method, on the other hand, produced (correct
and) stable solutions with R/L = 0.2. This leads to significant
savings in modeling effort (i.e. grid-generation, memory, cen-
tral-processing-unit time, etc). The new method was also ap-
plied to Toothacher Bay and although no data are available
for comparison, the results are far more acceptable from a
qualitative standpoint than those of the conventional method.

Finally, it is noted that although the new method strictly
speaking addresses only limitation 3 given in the introduction,
by eliminating the need to have fully reflecting exterior bound-
aries, it indirectly addresses the limitation regarding the shape
of the exterior coastline (i.e. limitation 2). As shown in Ap-
pendix 1, a straight and collinear coastline is required in the
traditional method in order to estimate the scattered potential
&, and the reflected wavefield ¢,. In the new method, on the
other hand, the scattered waves make no demand on the shape
of exterior coastline; straightness is required only in order to
estimate ¢,. However, when the exterior reflectivity is low (a
situation that the new method allows), ¢, is likely to have a
small effect on the overall solution (unlike the traditional ap-
proach where &, perforce contains fully reflected waves). The
new procedure hence enables the modeler to relax the require-
ment on the coastal geometry to some extent. However, as in
the case of the traditional elliptic models and some parabolic
equation models (Dalrymple and Martin 1992), the new pro-
cedure is still limited to constant depths in the exterior. This
constant depth is usually judiciously selected as some average
or representative depth along the open boundary. Efforts to
eliminate this limitation will be described in a future paper.

APPENDIX I.

The traditional treatment of exterior domains in harbor wave
models is described in this appendix. Referring to Fig. 1, the
exterior wavefield is written as ¢., = &; + &, + &,, where
i, d,, and &, represent the incident, the reflected, and the
scattered wavefields, respectively. If the water depth in the
exterior is constant, the mild-slope equation (1) reduces to

Vi + k=0 (22)

which is satisfied by ¢;, ¢,, and ¢,. As regards the scattered
waves, the following solution of (22) may be found by sepa-
rating variables:

&, = H,(kn)[A, cos(p8) + B, sin(p8)] (23)

where p = eigenvalue (to be determined); and H, = Hankel
function of the first kind and order p. Using the asymptotic
form of Hankel functions

H,,~‘/;-2l;_exp{i|:kr—<p+%)%]} as kr—» o (24)

it is easy to show that ¢, satisfies the following Sommerfeld
radiation condition (Mei 1983):

Vkr (9-4—’- - tk¢,) as kr — o (25)

[Hankel functions of the second kind do not satisfy the Som-
merfeld radiation condition at infinity and are hence excluded
from (23).]

If the exterior coastlines are collinear, fully reflective, and
lie along the x-axis, the boundary condition dd/dn = 0 yields

9, 8,
L 2 = = 6
o ™ along 6=0 and 6=m 26)
and
———1?1’ =0 along 6=0 and 6= @27

If ¢, = A, explikr cos(8 — 8,)], one may use (26) to obtain ¢,
= A, explikr cos(8 + 9,)]. To find &,, substitute (23) into (27)
along 6 =0

)4
= - = = 28
on Py r H,(kr)B, =0 (28)

Hence B, = 0. Similar substitution along 6 = 7 gives
2 — L H 44, sinpm = 0 (29)

which implies that sin(pw) = 0. Thus the eigenvalue p is de-
termined to be an integer (0, 1, 2, 3, ...).

If the boundary is partially reflecting, the boundary condi-
tion for ¢ is

3o,

=ad, at 6=0 and 6= 30)
an

where « is related to the reflection coefficient. Along 6 = 0,
substitution of (23) into (30) gives the following relation:

'—:B,,+aA,,=o G1)

Since A, and B, are independent of r, for a # 0, (31) holds
only if A =0 and B, = 0. Thus the traditional approach fails
for a pamally reﬂectmg exterior boundary Similarly collinear
coastlines are also a requirement in order to obtain the pre-
ceding analytical solutions.
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