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Abstract

A technique is developed for including the effects of dissipation due to wave breaking in two-dimensional elliptic models
based on the mild-slope wave equation. This involves exploration of convergence properties pertaining to iteration due to
presence of the nonlinear wave breaking parameter in the governing equations as well as new boundary conditions that
include wave-breaking effects. Five wave-breaking formulations are examined in conjunction with the resulting model,
which is applied to tests involving a sloping beach, a bar-trough bottom configuration, shore-connected and shore-parallel
breakwaters on a sloping beach, and two real-world cases. Model results show that three of the formulations, when used
within the context of the modeling scheme presented here, provide excellent results compared to data. q 2001 Elsevier
Science B.V. All rights reserved.
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1. Introduction

Surface gravity waves in harbors are usually mod-
elled using the two-dimensional mild-slope wave
equation. This elliptic equation is intended to repro-
duce simultaneously the effects of refraction, diffrac-

Žtion, and reflection due to structures as well as
.bathymetric variations in domains of arbitrary shape
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Ž .E-mail address: vijay.panchang@noaa.gov V. Panchang .

for the entire spectrum of practical wave conditions.
Several computational models have been developed

Žutilizing this equation e.g. Mei, 1983; Tsay and Liu,
1983; Chen and Houston, 1987; Kostense et al.,
1986; Mattioli, 1996; Demirbilek and Panchang,

.1998 and many have made their way into engineer-
Žing practice see review of contemporary models in

.Panchang et al., 1999 . A major limitation in most of
these models, though, is that they do not account for
the effects of wave breaking. As such, the models
frequently yield inordinately high values of wave
heights, especially in shallow areas. In this paper, we
discuss the inclusion of wave breaking in a two-di-
mensional mild-slope elliptic wave model.
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ŽSeveral investigators e.g. Booij, 1981; de Giro-
lamo et al., 1988; Massel, 1992; Isobe, 1999; Chawla

.et al., 1998 have proposed that breaking can be
introduced in the mild-slope equation in the form of
a parameterized dissipation term as follows:

=P CC =f q CC k 2q iC sg fs0 1Ž .Ž . Ž .g g g

Ž .where f x, y scomplex surface elevation function
'Ž .sf q if ; is y1 ; sswave frequency under1 2
Ž .consideration; C x, y s phase velocity s srk;

Ž .C x, y sgroup velocitysEsrEk; gswave break-g
Ž . Ž .ing factor; k x, y swavenumber s2prL , related

Ž .to the local depth d x, y through the dispersion
relation:

s 2sgk tanh kd 2Ž . Ž .

The wave height H can be obtained from complex
surface elevation function f as follows:

2s
2 2Hs f qf 3( Ž .Ž .1 2g

The wave breaking factor g contained in the last
Ž .term of Eq. 1 can be parameterized in several ways

Ž .discussed later . However, all parameterizations are
a function of the wave height and render the model
nonlinear. The nonlinearity can be handled in a fairly
straight-forward manner if only approximate paraxial

Ž .solutions to Eq. 1 are sought, typically via the
Ž .Aparabolic equation methodB Chawla et al., 1998

Žor other comparable approximate models Ebersole,
.1985 . In these methods, a solution is obtained by

progressing from one computational row to the next
in the shoreward direction. The solution along the
previous row, therefore, can be used to estimate g .
In domains of complex shape involving unlimited
angular scattering, these paraxial approximations are
inadequate and the full elliptic equation must be
solved. Solutions are then obtained simultaneously
over all grid points in the domain, and no Aprior
rowB values are available to estimate g . Further, the
inclusion of breaking invalidates the traditional open
boundary conditions in which components of f are
generally based on non-breaking plane-wave repre-

Ž .sentations e.g. Mei, 1983; Xu et al., 1996 .
In this paper, we develop a technique for incorpo-

rating wave breaking effects in a two-dimensional

elliptic harbor wave model and explore the behavior
of solution when breaking is included. The layout of
the paper is as follows. The governing equations,
including the development of an approximate but
reasonably realistic formulation of open boundary
conditions, are described in Section 2. Section 3
describes strategies for obtaining numerical solutions
for the nonlinear problem; since the overall solution
can be extremely time-intensive, efforts to obtain
greater efficiency are also explored. Various break-
ing wave parameterizations that are suitable for this
problem are presented in Section 4; these are used
with the model developed to perform validation and
field simulations in Section 5. Section 6 provides a
summary and concluding remarks.

2. Model formulation

Fig. 1 shows a typical harbor wave model domain
that may include arbitrarily shaped coastlines, is-
lands, structures, and variable bathymetry. The
semi-circle separates the computational domain V

from the exterior sea. Within V the coastal bound-
ary condition is

Ef
saf 4Ž .

En

where n is the outward normal to the boundary and
a is related to a user-specified boundary reflection
coefficient K as follows:r

1yK r
as ik 5Ž .

1qK r

In the exterior domain V
X the potential f is com-

prised of three components:

fsf qf qf 6Ž .i r s

where f s the incident wave that must be specifiedi

to force the model, f sa reflected wave that wouldr

exist in the absence of the harbor, and f sa scat-s

tered wave that emanates as a consequence of the
harbor. With appropriate descriptions for these com-
ponents, a boundary condition can be developed
along the semicircle.
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Fig. 1. Harbor wave model domain; definition sketch.

We will first discuss formulation of f and f . Ini r
Žmost elliptic models e.g. Xu et al., 1996; Tsay and

.Liu, 1983; Kostense et al., 1986; Chen, 1986 , these
are described as plane waves:

f sA exp ikrcos uyu 7Ž . Ž .Ž .i i i

f sK A exp ikrcos uqu 8Ž . Ž .Ž .r re i i

where A and u represent the incident wave ampli-i i
Ž .tude and direction, r, u denotes the location of a

point in polar coordinates, and K represents there

reflection coefficient for the exterior coastline. Eqs.
Ž . Ž .7 and 8 implicitly assume that the exterior depth
is constant; most real domains, however, show gen-
erally increasing depths in the offshore direction.
Further, the plane wave formulations do not contain
the effects of breaking, and, when used in conjunc-

Ž Ž ..tion with the governing equation Eq. 1 in the
interior that contains breaking, lead to a discontinuity
along the open boundary as a result of incorrect
forcing. To overcome this limitation, we assume that
the depths in the exterior vary only in the x-direction
along section 1 shown in Fig. 1. If natural variations
do not permit the representation of the exterior depths

by only one section, we may, if necessary, construct
a second one-dimensional section, shown as section
2 in Fig. 1.

For sections 1 and 2 with varying depths, it is not
possible to decouple f and f . However, they mayi r

be combined to form

f sf qf 9Ž .0 i r

Since the depths along these sections vary in one
direction only, f may be obtained by the solution0

Ž .of the one-dimensional version of Eq. 1 . This may
be obtained by describing the incident and reflected
waves, at any point along section 1, as follows:

f sA x exp Hik cos u d x exp iyk sin u 10Ž . Ž . Ž . Ž .i

f sB x exp Hy ikcosud x exp iyksinu 11Ž . Ž . Ž . Ž .r

Since ksinu is constant for one-dimensional geome-
try, f for section 1 may be written as01

f sc x exp iky sinu 12Ž . Ž . Ž .01

Ž .which may be substituted into Eq. 1 to yield

d dc
2CC qkCC kcos uq ig cs0 13Ž .Ž .g gž /d x d x

Ž .Eq. 13 , which constitutes a generalization of the
one-dimensional linear shallow-water equation de-

Ž .rived by Schaffer and Jonsson 1992 , is an elliptic
ordinary differential equation requiring two bound-
ary conditions. Assuming that section 1 extends out

Ž .to a region of constant depth or deep water , a
condition at P may be obtained by combining a1

specified incident wave

f P sA exp ikxcosu q iky sinu 14Ž . Ž . Ž .i 1 i i i

Ž .where A sa given input wave amplitude and ani

unknown reflected wave:

f P sBexp yikx cosu q iky sinu 15Ž . Ž . Ž .r 1 i i

Without loss of generality, the point P may be1

located at xs0, which allows elimination of B to
yield

Ec
s ikcosu 2 A yc 16Ž . Ž .i i

Ex
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At the coastal boundary point Q , a partial reflection1

boundary condition may be used:

2 2 2'Ec i k yk sin u 1yKŽ .r
s c 17Ž .

Ex 1qK r

where K is the reflection coefficient for the exteriorr
Ž . Ž Ž .coastline i.e. near Q note that Eq. 17 is slightly1

Ž . Ž .more sophisticated than Eqs. 4 and 5 and follows
.Isaacson and Qu, 1990 .
Ž .The solution of Eq. 13 using boundary condi-

Ž . Ž . Ž .tions 16 and 17 along with Eq. 12 produces f0

along section 1. Similar equations may be used for
section 2; note that if the bathymetry is strictly

Žone-dimensional i.e. if sections 1 and 2 are identi-
.cal

f sf exp ikl sinu 18Ž . Ž .01 02

where l is the alongshore separation between sec-
tions 1 and 2. The desired f along the semicircle0

may be obtained by laterally translating f and f01 02
Žvia interpolation between sections 1 and 2 described

.later , or if sections 1 and 2 are identical, through
Ž .equations similar to Eq. 18 .

The remainder of the exterior wavefield consists
of the scattered wavefield f that must radiate out tos

infinity with decreasing amplitude and may be ap-
Žproximately described following Panchang et al.

.2000; Behrendt, 1985 by:

Ef 1s
s iky f along G 19Ž .sž /En 2 r

A boundary condition for f along the semicircle G

may be obtained by using the continuity of the
Ž Ž . Ž ..potential Eqs. 6 and 9 and its derivative:

Ef Ef 10
s q iky fyf 20Ž . Ž .0ž /En En 2 r

Ž .To summarize, the solution of Eq. 13 provides
f along the one-dimensional sections. These values0

can be translated laterally and substituted into Eq.
Ž .20 to obtain the open boundary condition for the

Ž .two-dimensional Eq. 1 , which is solved in the
model domain V , using, in addition, the coastal

Ž .boundary condition given by Eq. 4 .

3. Numerical solution

A digitized bathymetry file is used to obtain the
Ž .depths d x along section 1. These depths are inter-

polated onto uniformly spaced nodes and the wave
Ž .properties C, C , and k are calculated. Eq. 13 isg

solved by finite-differences using boundary condi-
Ž . Ž .tions 16 and 17 . Since the wave breaking parame-

Žter is a function of the wave height according to
.parameterizations described in Section 4 and is un-

Ž .known a priori, Eq. 13 must be solved by iteration.
ŽFor the first iteration, g is set equal to 0 i.e.

.non-breaking solutions are obtained . The resulting
Ž .wave heights are used to estimate g and Eq. 13 is

solved again. The process is repeated until the solu-
tions converge. f values along the nodes on section0

Ž .1 are calculated using Eq. 12 . This procedure is
repeated for section 2 to obtain f .02

In the model interior V , the governing equation is
solved via the finite element method. f values0

along the nodes on the semicircle are obtained by
lateral translation of f and f as follows:01 02

f s 1yw f exp yik ryy sinuŽ . Ž .Ž .0 01

qwf exp ik rqy sinu 21Ž . Ž .Ž .02

where, by setting ys0 at the center of semicircle,
Ž .the interpolation function ws ryy r2 r, r is the

radius of the semicircle, y is the lateral coordinate of
the open boundary node relative to the origin of

Ž .semicircle Fig. 1 . These f values contribute to0
Ž .the open boundary condition 20 .

We used the Surface Water Modelling System
Ž .SMS , a graphical interface described by Zundell et

Ž .al. 1998 , to construct a triangular finite-element
grid network in V . This package allows the conve-
nient generation of wavelength-dependent grids and
specification of the desired reflection coefficients on

Ž .various segments of the solid boundary. Eq. 1 with
Ž . Ž .boundary conditions 4 and 20 is solved via the
ŽGalerkin technique Demirbilek and Panchang,

.1998 . Since a resolution of about 10 grids per local
wavelength is generally needed for accurate solu-
tions, an extremely large system of linear equations
results. Iterative techniques based on the conjugate

Ž .gradient methods described by Panchang et al. 1991
Ž .and Li 1994 , which are guaranteed to converge,
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were used to solve the linear equations. The solution
was assumed to have converged when the following
L2 norm was met:

2N N

K f yFÝ Ý i j j iž /
is1 js1

-´ 22Ž .N
2< <fÝ i

is1

where K and F refer to the stiffness matrix and load
vector, respectively, and ´ is a specified tolerance
Ž y10.typically 10 . In general, the number of itera-

Žtions is of the order of the number of nodes typi-
.cally of the order of 200,000 . More recently, Oliveira

Ž .and Anastasiou 1998 explored the use of the Gen-
eralized Minimum Residual method and the Stabi-
lized Biconjugate Gradient method for greater effi-
ciency with finite-difference models based on the

Ž .linear version of Eq. 1 . In our finite-element work,
however, the GMRES method of Oliveira and Anas-

Ž . Žtasiou 1998 failed to converge as independently
Ž ..confirmed by Bogle 1999, personal communication

whereas their latter method yielded erratic efficiency.
Significant improvements in speed were obtained

by using two-level code parallelization for operation
on high performance parallel computing platforms

Ž .such as the SGIrCray Origin2000 O2K . For spec-
tral simulations without interfrequency exchange, the

Ž .solution of Eq. 1 for each monochromatic compo-
nent leads to an independent system of linear equa-
tions. These equations are solved using distributed

Ž .clusters of shared-memory multiprocessors SMPs ,
which have to communicate and share the workload,
e.g. via a Message Passing Interface, MPI. Individual
wave components are distributed to multiple proces-
sors via MPI and load-balanced through the Man-

Ž .ager–Worker model Foster, 1997; Bova et al. 2000 .
At the second level, matrix operations are paral-
lelized, since most of the CPU-time for each wave
component is utilized in the solution of the linear
system of equations. For conjugate gradient solvers,
90% of the CPU time is spent on matrix–vector
products and inner product kernels. Therefore,

Ž .OpenMP OARB, 1997 was used to parallelize the
kernels. Thus, the two-level parallelization used
OpenMP to accelerate the solution for each compo-

nent and MPI to simultaneously obtain solutions to
multiple incident wave components. This led to a
reduction in run times by a factor of about 200 for
large, real-world applications. More details regarding
parallelization schemes for harbor wave models may

Ž .be found in Bova et al. 2000 .

4. Wave breaking criteria and their implementa-
tion

In this paper, the effect of incorporating five wave
breaking models into the simulation strategy de-
scribed above was examined. The breaking models
are based on the formulations of Battjes and Janssen
Ž . Ž . Ž .1978 , Dally et al. 1985 , Massel 1992 , Chawla et

Ž . Ž . Žal. 1998 , and Isobe 1999 the relevant formulas
.for g are presented in Sections 4.1–4.5 . Some of

these parameterizations have been extensively vali-
Ždated against field data e.g. Larson, 1995; Kam-

.phuis, 1994 . It is noted, however, that some of these
parameterizations rely on spectral wave heights.
Since the spectral conditions used while developing
them were narrow-peaked, the monochromatic wave

Žheight is used in the parameterizations as in De
.Girolamo et al., 1988 for monochromatic applica-

tions described here. However, the significant wave
Ž . Žheight SWH is used in spectral simulations e.g.

. Ž .the last application described in Section 5 . Eqs. 1
Ž .and 13 may be solved by iteration by estimating

the nonlinear g on the basis of the previous solution.
The overall problem was assumed to have been
solved when the maximum difference, d , at any grid
point between two successive nonlinear solutions
reaches 10y3 or less. Further, the maximum number
of non-linear iterations was set to 15 in the event of
non-convergence or slow convergence.

To explore the behavior of the solution of this
highly nonlinear problem and to design modifica-
tions as needed when the various breaking criteria

Ž .are used with Eq. 1 , the hydraulic model study of
Ž .Battjes and Janssen 1978 describing wave propaga-

tion up a sloping beach was used as a benchmark.
The model geometry is shown in Fig. 2. The incident
wave height Hs0.202 m, period Ts2.29 s, and
the wave direction is normal to the shoreline. The

Ž .solution of Eq. 1 with the boundary conditions
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Fig. 2. Model problem beach with a uniform slope 1r20.

described in section 2 for gs0 is shown in Fig. 3,
indicating an increase in wave height in the shore-
ward direction due to shoaling. The hydraulic model
data, on the other hand, show a general decrease in
the shoaling area due to breaking effects. The salient
features of the various parameterizations used to
describe g and their implementation are described
below.

( ) ( )4.1. Battjes and Janssen 1978 criterion BJ

a 1
gs vQ 23Ž .b 2p c bg

Žwhere a is an adjustable constant standard values
.1 ,

2Q sexp y 1yQ rb 24Ž . Ž .b b

H
bs 25Ž .'2 Hm

Ž .In Eq. 25 , H is the local wave height and H ism

the maximum allowable wave height defined by

Fig. 3. Wave height comparison for uniform slope bathymetry, BJ
and DDD criteria.

Miche’s criterion with the wave breaking parameter
g as0

0.88 g0
H s tanh kd 26Ž .m k 0.88

Ž .In shallow water, Eq. 26 can be simplified as
ŽH sg d where d is the local water depth and gm 0 0

.has a standard value of 0.8 . On the other hand, the
Ž . Žbreaking factor g in Eq. 24 tends to 0 no breaking

. Žoccurs for Q ™0. Q is almost 0 Q s1.5=b b b
y5 . Ž .10 for bs0.3 in Eq. 24 . A lower limit for

Ž .wave breaking may then be obtained from Eq. 25 :

'H s0.3 2 H 27Ž .b m

If the wave height HFH , the value of g would beb
Ž .0 non-breaking ; otherwise, g is estimated by using
Ž .Eq. 23 .

Although the problem is one-dimensional, solu-
tions were obtained on a two-dimensional grid to
ensure that the interfacing of the two one-dimen-
sional sections and the semicircular open boundary
was appropriate. A semicircle and the coastline
formed the boundaries of a two-dimensional finite-
element grid containing 125,584 triangular elements.
The fully absorbing coastline was placed at xs0 at

Ž .a depth of 0.05 m. Eq. 13 converged after eight
Ž .nonlinear iterations Fig. 4 , and its solution was

Ž .used to force the two-dimensional Eq. 1 , which
converged after 12 non-linear iterations. Completely
one-dimensional solutions with no spurious effects
were obtained. The results along a cross-shore tran-
sect are shown in Fig. 3; the agreement between
model results and laboratory data is satisfactory.

Each round of the solution for a specified g

requires several thousand iterations and the overall
process is highly time-intensive. An attempt was

Ž .Fig. 4. Convergence of one-dimensional model xs0 with BJ
criterion.
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therefore made to combine the iterations for g with
the conjugate gradient iterations. g was initially set
equal to 0 and conjugate gradient iterations were
performed until ´ reached 10y10 for a linear solu-
tion. Thereafter, g was updated every 100 iterations
using the latest value of g . This procedure did not
converge uniformly, particularly when the effects of
breaking were significant. This is further evidence

Žthat perturbations to the iterative techniques for
instance, by modification of g or introduction of
finite element equations with different boundary con-

.ditions can impede the progress towards conver-
Ž .gence observed by Oliveira and Anastasiou 1998

for their finite-difference model. This effort was
therefore abandoned.

( ) ( )4.2. Dally et al. 1985 criterion DDD

2 2x G d
gs 1y 28Ž .2d H

where H is the local wave height, d is the local
depth, and G and x are parameters known as the
stable wave factor and wave decay factor. These two

Ž .non-dimensional parameters Table 1 were deter-
Ž .mined by Dally et al. 1985 for different beach

slopes on the basis of the laboratory data of Horikawa
Ž .and Kuo 1966 . In this paper, G and x were set to

0.4 and 0.11 for all test-cases.
Ž .The lower limit of wave breaking i.e. gs0 may

Ž .be obtained from Eq. 28 as follows:

H sG d 29Ž .b

In the simulations, the value of g is set to be 0
Ž .non-breaking if the wave height H estimated in the
previous iteration is less than H , otherwise g isb

Ž .estimated by using Eq. 28 .

Table 1
Ž .Best fit values G and x vs. bottom slope, after Dally et al. 1985

Slope G x

1r80 0.350 0.100
1r65 0.355 0.115
1r30 0.475 0.275

Ž .Fig. 5. Convergence of one-dimensional model xs0 with DDD
criterion.

Unlike the simulations with the BJ criterion, the
nonlinear iterations using the DDD criterion did not
converge for the two-dimensional model to the spec-
ified tolerance after the maximum number of itera-

Žtions. Investigation revealed perturbations Fig. 5,
. Ž .dashed line in the solution of Eq. 13 used to obtain

the forcing functions for the two-dimensional model.
After 15 iterations, the tolerance criterion was nearly

Ž y3 . Ž .met ds1.21=10 for Eq. 13 , but the resulting
two-dimensional solution was characterized by noise
in the area where breaking is important. Detailed
examination of the two-dimensional results showed
that successive solutions at many nodes in shallow
areas oscillated considerably between high and low
no matter how many iterations were used. Such
oscillations and occasional non-convergence were
encountered in other formulations also. Due to the
inter-connectedness of the grid points and the differ-
ences in the breaking formulations, it is difficult to

Žpinpoint the exact cause of these oscillations which
.did not occur with the BJ criterion , but it may be

surmised that they stem from variations in g as the
iterations proceed. In shallow areas, the first round
Ž .with gs0 produced large wave heights, which
lead to a high breaking factor and a subsequently
damped solution for the second round. In the follow-
ing round, the breaking factor is consequently negli-
gible, leading to a solution similar to the non-break-
ing solution, and so on. To remedy this problem, g
was estimated on the basis of the average of two
previous solutions. This technique did smooth the
perturbations and accelerated convergence. The one-
dimensional boundary forcing model converged in

y4 Žeight non-linear iterations with ds4.03=10 Fig.
.5, solid line and the two-dimensional model in 10

non-linear iterations with ds6.24=10y4 ; the solu-
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tions compare very well against laboratory data as
shown in Fig. 3. The averaging technique was there-
fore used while implementing the DDD criterion in
the verification described in Section 5.

( ) ( )4.3. Massel 1992 criterion M

y1H H s H
gs 1q0.65 1y0.35 30Ž .ž / ž /d d p c dg

In this formulation, it is noted that, g-0 if
H)2.85d. An upper bound of H s2.85d wasm

therefore placed on model estimates of wave height
before estimating g for the next round of iterations.

When the M criterion was used, both the one-di-
Ž .mensional forcing Eq. 13 and the two-dimensional

Ž .model Eq. 1 converged in 10 iterations. As with the
BJ criterion, averaging the previous two results to
estimate g led to smoother and accelerated conver-

Ž .gence in six iterations not shown . However, the
Ž .solution Fig. 6 agrees with data less favorably than

with the BJ and DDD models. The breaking effect is
excessive and appears to start further offshore than
in Fig. 3. It was speculated that the underestimation
was caused by the absence of a lower limit for wave

Ž . Ž .breaking such as Eqs. 27 or 29 , allowing the
Žwaves to experience breaking at all times except

. Žwhen Hs0 . A lower limit of H shd compara-b
.ble to the BJ and DDD criteria was therefore intro-

Žduced in the simulations with the M criterion this
.combination is denoted by MqH hereafter . Thisb

Ž .adjustment produced improved results Fig. 6 when
g was estimated using the average of two previous

Žresults when g was estimated using only the previ-

Fig. 6. Wave height comparison for uniform slope bathymetry, M
and COK criteria.

ous result, the introduction of the lower limit im-
peded convergence, as in the case of the DDD

.criterion . Some tests were done to identify an appro-
priate value of h. The frequently used value of 0.78
produced the results shown in Fig. 6. The averaging
technique with and without a lower limit was used
for applications described in Section 5.

( ) ( )4.4. Chawla et al. 1998 criterion COK

For inclusion in their parabolic approximation
Ž . Ž .model based on Eq. 1 , Chawla et al. 1998 adopted

the statistical wave breaking formulation of Thornton
Ž .and Guza 1983 . Considering the monochromatic

wave as an extreme condition of spectral wave, their
breaking criterion may be written as:

3'3 p s B
5gs H 31Ž .4 52 C l dg

where the parameters B and l were assigned values
Ž .of 1.0 and 0.6, respectively, by Chawla et al. 1998 .

Ž . Ž .Using Eq. 31 in Eq. 1 led to oscillating solutions
between iterates when g was based on the previous
iterate. However, estimation of g based on the aver-
age of two previous solutions led to smooth conver-

Ž .gence for both the one-dimensional Eq. 13 and the
Ž .two-dimensional Eq. 1 . The solution, though, shows

a considerable underestimation relative to the data
Ž .Fig. 6 , as with the M criterion. Introduction of a

Žlower limit such as setting gs0 for wave heights
.smaller than an appropriately defined H did notb

improve results in this case; in fact the solutions
diverged. The averaging technique with no lower
limit was therefore used in Section 5.

( ) ( )4.5. Isobe 1999 criterion I

Ž .Isobe 1999 gave a parameterization for g that
depends on the bottom slope, and the relative depth
Ž .l sHrd ; in this formulation, g is zero when l is

less than a predetermined parameter l , which de-b

pends on the deep-water wavelength, the local depth,
and the bottom slope. When this breaking model was

Ž .used with Eq. 1 , we were unable to obtain conver-
gence, regardless of the manner in which g was

Žestimated i.e. based on the previous result or on the
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.average of two previous results . Results of the
one-dimensional model oscillated considerably and
did not converge even after 50 iterations. Obviously,
this oscillating forcing function cannot produce sta-
bility in the two-dimensional model. Further, the
definition of the bottom slope at all grid points in an
arbitrarily varying domain with waves propagating in

Žmany directions is difficult also noted by Booij et
.al., 1999 . In view of these difficulties, the I-criterion

Žis not further investigated in this paper although
other modelling approaches do utilize this formula-

.tion, e.g. Isobe, 1999 .

5. Verification and practical application

To verify model performance in more complex
applications, further simulations were made with the
two-dimensional numerical model. The tests consist
of wave propagation over a bar-trough bathymetry,
over a transect in the North Sea with arbitrarily
varying depths, around breakwaters on a sloping
beach, and in Ponce de Leon Inlet in Florida. In all
cases, hydraulic model or field data are available for
model verification. In the first two cases, the
bathymetry varies only in the offshore direction, i.e.
they are essentially one-dimensional problems. How-
ever, simulations are performed with the two-dimen-
sional model. The other three problems contain
bathymetric or other variations in both x and y

Ždirections in the event of occasional slow conver-
gence the result after 15 non-linear iterations is

.shown .
Experimental data for wave shoaling, reflection,

and breaking over the bar-trough bottom were ob-
Ž .tained by Battjes and Janssen 1978 . In view of the

overall similarity of the parameters for this test to
those of the linear slope case described earlier, we do
not display the results of our simulation. We merely
note that deviations from a linear slope create a

Žmarked undulating effect in the data compared with
.data for the linearly sloping beach . The BJ and

DDD model captured this feature very well. The
ŽCOK and M models underestimated the data as in

.the sloping beach case ; see summary of results in
Table 2. Instead, we show results for the North Sea
test, since the transect along which field data were

Ž .collected Oelerich and Dette, 1988 and the relevant

Table 2
Ž .Summary of model performance, model vs. data, RMS errors %

Test Breaking parameterization

BJ DDD COK M MqHb

Uniform slope 0.08 0.04 0.41 0.33 0.44
Bar-trough bathymetry 0.07 0.11 0.42 0.42 0.17
North Sea 0.06 0.05 0.25 0.23 0.08

Shore perpendicular breakwater
xs6.0 m 0.19 0.20 0.21 0.17 0.21
xs5.0 m 0.20 0.21 0.22 0.21 0.21
xs4.0 m 0.10 0.14 0.24 0.21 0.13

Shore parallel breakwater
xs6.2 m 0.12 0.17 0.29 0.34 0.09
xs5.8 m 0.12 0.12 0.16 0.46 0.11
xs4.0 m 0.16 0.18 0.28 0.46 0.15

Ponce inlet
Transect 1
Ts8.0 s, H s0.95 m 0.20 0.20i

Ts10.0 s, H s0.93 m 0.21 0.20i

Ts15.0 s, H s0.78 m 0.19 0.18i

Transect 2
Ts8.0 s, H s0.95 m 0.33 0.32i

Ts10.0 s, H s0.93 m 0.33 0.30i

Ts15.0 s, H s0.78 m 0.32 0.25i
Ž .Transect 1 spectral waves 0.11
Ž .Transect 2 spectral waves 0.36

Ž .wave parameters Fig. 7a represent, coincidentally,
an approximately scaled-up version of the linear
slope and bar-trough bathymetry tests of Battjes and

Ž .Janssen 1978 . Results shown in Fig. 7b and Table
2 again suggest that the BJ, DDD, and the MqHb

models provide the best match with field data. As a
consequence of the consistent underestimation result-
ing from the M and COK parameterizations, the
results of these two models are not shown hereafter;
they are only summarized in Table 2.

In the case of breakwaters on sloping beaches, the
hydraulic model data of Watanabe and Maruyama
Ž .1986 were used. Two cases are considered. In the
first case, a detached breakwater is placed parallel to
the shoreline on a plane beach with a uniform slope

Ž .of 1r50 Fig. 8a . The breakwater was designed to
almost perfectly reflect the normally incident waves.
A two-dimensional grid with 70,600 triangular ele-
ments was used, with a fully absorbing coastal
boundary located at a depth of 0.0025 m. The break-
water was given a thickness of 0.06 m. Numerical
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Ž .Fig. 7. a Depth profile, North Sea study; after Oelerich and Dette
Ž . Ž .1988 . b Cross-shore wave height comparison; data from

Ž .Oelerich and Dette 1988 .

solutions are compared with measured data in Fig.
8b for three cross-shore transects. While all five
models captured the essential features of the data in
a qualitative sense, the BJ and MqH generallyb

provided a better quantitative fit to the data than the
Ž .others Table 2 .

In the second case, a jetty placed was perpendicu-
lar to the shoreline. The bathymetry and the incident
wave conditions are the same as before, except that
the incident wave angle is 608. The modelled phase
diagram, depicted in Fig. 9a, shows the expected
bending of the waves as one goes from offshore to
nearshore and no spurious oscillations that could be
attributed to poor boundary conditions. This demon-
strates the importance of interfacing the two-dimen-

Ž .sional model with an appropriate model viz. Eq. 13
for the exterior. Modelled wave heights are com-
pared with the data of Watanabe and Maruyama
Ž .1986 in Fig. 9b for three cross-shore transects. In
general, all models showed significant deviations
from the non-breaking results, and the BJ, DDD, and
MqH models provide the best match with theb

Ždata. Along xs4 m, all results including the non-
.breaking results appear to underestimate the hy-

Ždraulic model data for y)2 m i.e. before the onset
.of significant breaking . The reasons for this are not

clear.

Finally, the model was applied to Ponce de Leon
Ž .Inlet Florida , of which detailed field and hydraulic

model studies are being conducted by the US Army
Ž .Corps of Engineers Harkins et al., 1997 . The ge-

Ž .ometry Fig. 10 consists of an exposed coastline, an
inlet leading to the Halifax and Indian Rivers, a jetty
with a scoured area to its side, a large promontory
with shoals and trenches that juts out toward the
ocean next to the jetty, and a bathymetry that is
generally sloping in the offshore direction. Simula-

Ž .Fig. 8. a Detached breakwater on sloping beach; horizontal lines
Ž . Ž .represent depth contours m . b Wave height comparison for

Ž . Ž .problem in a note: breakwater is at ys3 m .
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Ž .Fig. 9. a Jetty on sloping beach. Phase diagram, contour lines
Ž .represent cosine of phases0. b Wave height comparison for

Ž .problem in a .

tions were performed on a wavelength-dependent
grid containing 265,119 nodes and were found to be
largely insensitive to the reflection coefficient as-
signed to the jetty. For this problem with an arbitrar-
ily varying bathymetry, the effect of the boundary
conditions proposed here may be seen in Fig. 11,
where a comparison with the traditional method of

Žusing constant depths in the exterior is given e.g.
.Xu et al., 1996 and models cited therein for the case

of a 15-s incident wave of height 0.78 m. The
constant depth assumption induces artificial diffrac-

Žtion, indicated by breaks in the phase diagram Fig.
.11a, top and large waves even in shallow areas near

Ž .the open boundary Fig. 11b, top . These spurious
effects can often permeate the entire solution. With
the new method, a more satisfactory solution is

Ž .obtained Fig. 11a and b, bottom .
Fig. 12 shows breaking and non-breaking results

along transect 3 shown in Fig. 10; breaking clearly
plays a significant role. In Figs. 13 and 14, hydraulic
model data along the two of the transects shown in
Fig. 10 are compared to numerical results for three
normally-incident monochromatic wave conditions.
The numerical results appear to exhibit a higher level

Žof variability than the hydraulic model data espe-
.cially along Transect 2 . However, it may be noted

that the bathymetric variations in the vicinity of the
transects are comparable to those in the shoal studies

Ž .of Berkhoff et al. 1982 and Vincent and Briggs
Ž .1989 , where data obtained at much greater resolu-

Ž .tion approximately 5 data points per wavelength
indicate that wave height amplification factors vary
from 0.2 to 2.6. It is possible, therefore, that the

Žhydraulic model data for Ponce Inlet obtained at a
resolution of approximately 0.66 data points per

.wavelength suffer from under-sampling. The numer-
ical results show the same kind of variability as that
observed in the shoal studies, suggesting that these
results are reasonable. Further, the variability is less
for the longer waves than for the shorter waves,
which should be expected. The introduction of break-
ing tends to bring the model results closer to hy-
draulic model data in many locations. Table 2 pro-
vides a comparison of RMS errors for the numerical

Žsolutions only the BJ and DDD models were used
for the Ponce Inlet simulations in view of their

Fig. 10. Ponce de Leon Inlet, model bathymetry. Transects 1, 2, 3
and 4 used for wave height comparisons.
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Ž .Fig. 11. a Ponce Inlet, modelled phase diagrams. Traditional
Ž . Ž . Ž .method top ; present method bottom . b Ponce Inlet, modelled

Ž . Ž .wave heights. Traditional method top ; present method bottom .

.overall robustness observed in the previous tests .
While the non-breaking and breaking results are
fairly similar on the offshore Transect 1, both break-

Fig. 12. Breaking and non-breaking results on Transect 3 for
incident wave of Ts10 s, Hs0.93 m.

ing models produce, in general, smaller errors along
Transect 2.

Simulations were also performed for an input
TMA spectrum with a wrapped-normal directional
distribution. The spectrum was decomposed into 66
monochromatic bins of size 0.13 Hz and 108, and
simulations were made for each monochromatic
component. The results were subsequently assembled

Ž .using linear superposition. The results Fig. 15 ex-
Žhibit far less variability for spectral conditions as

Fig. 13. Wave height comparison along Transect 1.
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.described in Panchang et al., 1990 and a generally
good match with data, although some overestimation

Žon Transect 2 persists it is to be noted that these
results involve no tuning of any kind for the coeffi-

.cients associated with the breaking formulations . In
view of this overestimation, an alternative strategy
calculating the breaking factor on the basis of the

Ž .significant wave height SWH instead of the com-
ponent wave height was considered. This eliminates
the independence of individual component simula-
tions; the code was therefore modified so that one
round of nonlinear iterations for all components was
performed, the significant wave height calculated at
each grid point, and this larger wave height used to

Ž .estimate the breaking factor Chawla et al., 1998 .
This approach is comparable to that used in the

Ž .model SWAN Booij et al., 1999 which has been
extensively verified for areas with severe breaking. It
led to much smaller wave heights, and as seen in
Fig. 15 for Transect 4, led to the initiation of break-

Fig. 14. Wave height comparison along Transect 2.

Fig. 15. Wave height comparison, for spectral wave input.

Žing occurring further offshore xs1200 m as op-
.posed to xs1500 m . While some improvement is

seen along Transect 2, the availability of data in the
Ž .nearshore areas in the vicinity of Transect 3 would

have permitted a more detailed quantitative valida-
tion of overall model performance.

6. Summary and concluding remarks

The effect of wave breaking in most elliptic har-
bor wave prediction models is either completely
absent or inadequately represented by traditional
boundary conditions used to force the models. A
strategy is designed to include breaking in a two-di-
mensional finite-element harbor wave model. It is

Ž . Ž . Ž .based on an interfacing of Eqs. 1 and 13 . Eq. 13
is first used to describe wave propagation, including
breaking, in the exterior region, which is assumed to
vary largely in the cross-shore direction along two
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transects. Its solution is used as part of the forcing
Ž .function for the two-dimensional Eq. 1 that is

solved in the model domain. Nonlinear iterative
strategies were developed for incorporating the
breaking parameter g .

The model was used with five breaking formula-
tions. The I-criterion was found to be unsuitable
within the context of the modelling scheme de-
scribed here. In general, the absence of a lower
breaking limit contributed to excessive dissipation
Ž .compared with data in the COK and M formula-
tions while the BJ, DDD, and MqH formulationsb

gave more accurate results, as seen in Table 2.
Applications to real-world situations like the North
Sea and Ponce de Leon Inlet tests demonstrate that
the effects of breaking are indeed significant and that
the model described here provides reasonable simu-
lations for both monochromatic and spectral cases.
The other formulations provided good results com-
pared with data for the six applications considered in
this paper. In nearly all cases considered, wave
heights in the nearshore areas obtained from data as

Ž .well as from the one-dimensional Eq. 13 were
smaller than the non-breaking results. This justifies
the inclusion of wave breaking not only in the
computational model but also in the boundary condi-
tions. If traditional boundary conditions based on

Ž .non-breaking waves are used to force Eq. 1 , a
mismatch along the open boundary results, and con-
sequently, spurious effects would propagate into the
model domain.
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