Solution of the mild-slope wave problem by iteration
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Iterative solution procedures for solving the complete mild-slope wave (combined refraction-
diffraction) equation are developed. Existing models for investigating wave refraction-diffraction
in coastal areas have one of two main problems: (i) Some of the physics is lost as they resort to
approximate solutions (e.g. parabolic approximations). Thus they are inappropriate in many
situations. (ii) If all of the physics is to be incorporated, the problem defies computer solution
except for extremely small domains (approximately 10 wavelengths), chiefly because the matrix
equation associated with numerical discretization of the complete problem does not normally -
lend itself to solution by iteration. This paper describes the construction of iterative models that
overcome both problems. First, a modified equation with an identical solution but which lends
itself to iterative procedures is formulated, and the conjugate gradient method is used. A second,
more rapidly converging algorithm is obtained by preconditioning.

It is shown that the algorithms can be conveniently implemented on regions much larger than
those handled by conventional models, without compromising the physics of the equation.
Further, they can be efficiently run in either the linear or nonlinear mode. Comparisons of model
results with laboratory data and other numerical and analytical solutions are found to be excellent
for several cases. The procedures thus enable the engineer to expand the scope of the mild-slope
equation. As an example, an experiment is performed to demonstrate the sensitivity of the

wavefield to the location of a breakwater in a region with complex bathymetry.

1. INTRODUCTION

The combined refraction-diffraction or the ‘mild-slope’
wave equation, derived by Berkhoff!-?, enables the
engineer to calculate wave heights in coastal regions. This
equation overcomes the difficulty associated with caustics
obtained while performing wave refraction calculations
(ray-tracing) in regions of complex bathymetry. In recent
years, it has been shown to be extremely useful in
modeling surface wave propagation in a wide variety of
situations (since it passes, in the limit, to the deep and
shallow water equations). Examples include studies of
long and short wave propagation in the vicinity of
islands?~®, wave propagation in areas of high energy
dissipation such as marine vegetation’, wave forces on
floating docks®, spectral propagation in bays® the
construction of breakwater-gap diffraction diagrams®,
etc.
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Despite its immense usefulness, the refraction—diffraction
model cannot be applied to several situations, particularly
when tackling short wave propagation (periods on the
order of seconds) in most coastal areas of significant
dimensions (a few kilometers). The reason is that the
equation is an inseparable elliptic partial differential
equation, and the solution makes prohibitive demands
on computer memory and time. It is not surprising,
therefore, that in some of the applications mentioned
above, approximate methods have been used to solve the
equation. '

Consider, for example, the case of wave propagation
in Homer Spit (Alaska), studied by Ebersole et al.!°® [using
an approximate method] on a computational domain
containing roughly 100 x 80 nodes. If the complete
elliptic boundary-value problem is to be solved for such
a case, one is confronted with the task of solving 8000
simultaneous equations in complex variables. In this
example the grid sizes used by Ebersole et al.'® are of
the order of the deepwater wavelengths. The requirements
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are more stringent for shallow-water waves with shorter
wavelengths. Also, in many situations much finer
resolution is required (say 5 points per wavelength),
increasing the number of equations to 200,000. As this
system of equations does not lend itself to iterative
solution (indirect methods), Gaussian elimination is used,
necessitating the storage of a huge system matrix.
Although Houston? has successfully solved the complete
problem for over 10,000 nodes, it involved considerable
difficulty, and it is clear that the need to use direct
methods severely restricts the size of the domain in which
wave propagation can be simulated with the mild-slope
equation.

For most applications, then, one resorts to approximate
methods of solving the mild-slope equation. These
approximate methods consist of: (i} the parabolic
equation method!! =13, (i) the RCPWAVE model!%!4
and (iii) the EVP model'®. These models avert computa-
tional problems, but the computational convenience is
obtained at the cost of some of the physics contained in
the governing equation. In particular, they have one or
both of the following restrictions:

a. The waves must have a principal propagation
direction (say x), and difiraction effects are restricted
to the y-direction only (for Cartesian grid models).

b. The reflected (backscattered) component of the wave
potential in the negative x-direction should be
negligibly small.

Thus the approximate models are inappropriate when
the bathymetry or structures such as harbor walls,
breakwaters, ctc. reflect energy in the (—x) direction,
and/or when the scattering is at large angles. The above
restrictions thus limit the applicability of these methods.
Further, these methods encounter considerable difficulties
when the domain is non-rectangular or when the angle
of incidence is varied substantially.

Another class of recent models'®~'9, is based on the
solution of the time-dependent hyperbolic equations
associated with the mild-slope equation. Although no
approximations (such as a or b above} are necessary,
integration over an extremely large number of wave
periods with small timesteps (usually governed by the
Courant condition) is required for model spin-up. An
inordinate amount of computer time is required for large
domains, and, moreover, the treatment of open boundaries
for the time-dependent equation is difficult. Dong and
Al-Mashouk?° report that in their study the hyperbolic
approach did not fare as well as the elliptic problem.

In situations where the above models are inadequate,
the complete elliptic mild-slope equation must be solved.
For small domains (approximately 10 wavelengths) this
can be done fairly efficiently using direct Gaussian
elimination. For larger domains, the computer require-
ments of Gaussian elimination are prohibitive, despite
recent advances in sparse matrix technology. Storage
requirements of iterative procedures, on the other hand,
are extremely modest, even for large domains. These
procedures also accommodate non-rectangular domains
easily. However, as already indicated, the mild-slope
equation cannot be solved by standard iterative procedures,
since the conditions required for convergence of the
iterations are not usually satisfied; the details are
described in Section 2. In this paper, we modify the basic
matrix equation associated with finite-difference treatment
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of the mild-slope equation in a manner that allows the
use of an iterative procedure. The iterative method then
uses the conjugate-gradient algorithm, which is described
in detail in Section 3. Further, a second algorithm is
implemented, based on a modification of the conjugate-
gradient algorithm?!, which considerably enhances the
rate of convergence. In Section 4, the procedures are used
to obtain simulations of wave refraction~diffraction and
reflection in rectangular and non-rectangular coastal
regions, using both linear and nonlinear dispersion
relations. The results are compared with laboratory data
and other existing solutions. Concluding remarks are
offered in Section 5.

2. MATHEMATICAL PROBLEM STATEMENT

a. Governing equations, boundary conditions

The combined refraction—diffraction equation®2? that
describes the propagation of periodic, small-amplitude,
surfaice gravity waves over an arbitrarily varying,
mild-sloped sea-bed is:

C
V.(CCgV(D)-l-E“’ a2d =0, (1)
where

O(x, y) = complex surface elevation function, from
which the wave height can be estimated.

I = wave frequency under consideration,

C(x, y) = phase velocity =o/k

C,(x, y) = group velocity = dg/dk

k(x, y) = wavenumber (= 2n/L), related to the local
depth d(x, y) through the dispersion relation:

0% = gk Tanh(kd). (2

A detailed derivation of equation (1) may be found in
Berkhoff2. Essentially, equation (1) represents the
vertically integrated form of Laplace’s equation for linear
wave propagation, with the vertical variation for @
assumed to be the form that corresponds to a horizontal
bed. Assuchitis valid when the bottom has a ‘mild-slope’,
characterized by Vd/kd =0(¢) « 1. Instead of working
with equation (1), it is convenient to work with the
following wave equation:

V3¢ + K2(x, )¢ =0, ©)

which is obtained from equation (1) through the
transformation:!?

VZ(ccg)O.S
(ch)O.S ’

In this formulation, ¢ is a modified wave potential
function and K is a modified wavenumber. We note that
the above transformation is merely for convenience of
demonstration of the procedure; all operations performed
here on the reduced wave equation (3) can be applied to
Berkhofi’s original equation (1). Similarly, a rectangular
domain is chosen for demonstration. (The method can
be easily applied to non-rectangular regions, with internal
boundaries when necessary, as shown in Section 4.) The
domain, coordinate axes, incident wave direction, etc. are
shown in Fig. 1.

¢ =(CC,)*5 and K2 =k? - @)
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Fig. 1. Model grid

Boundary conditions have to be imposed along AC,
BD, CD, and AB, and in general, they may be written as:

L(¢)=0. ©)

More specifically, the boundary conditions are mostly of
the Robbins type. Along AC, the incident wave is ¢, = A4;,
exp(iKx), and A, is specified as unity (i =/ — 1). There
exists also a backscattered component, which may be
approximated by ¢, = B[exp(—iKx)]. (For more detail
see Ref. 23)) Since B is not necessarily known, we can
differentiate,

d
% = iK(¢— $) = iK@u— (@ — ¢ (6

and obtain

0¢

Y K2 —

oo = iK(2—-¢) ™
since ¢, =1 at x=0. Equation (7) can be one form of
the boundary condition along AC. Alternatively, the
wavemaker condition

0
6_4? = Constant 8)
can be used, as in Ref. 24. If wave conditions along AC
are known or calculated using some other coarser model,
the Dirichlet condition may be used.

The other boundaries may represent a seawall, an open
boundary, or a coastline. In such cases the following
condition may be used:2*

a¢ ‘

— —iKagp =0, 9
an ¢ )
where n is the direction normal to the boundary, and «
is a reflection coefficient that varies with the type of
boundary and may have to be determined empirically.
Boundary conditions similar to those described above or
variations thereof are also used?+26-27

b. Finite-difference representation

The domain (Fig. 1) is discretized into grids of size Ax
and Ay. If ¢} is used to denote the grid-point value of
the potential, standard discretization of equation (1) using

second-order finite-differences (for Ax = Ay) yields:

TG by + by + [(KAX)? - 4195 =0.
(10)

The conventional approach consists of writing such
equations for all points in the domain. The resulting
system of equations may be expressed in matrix form as:

[A){¢} = {/} (11

where [A] is the system matrix, {¢} is the unknown vector
(of the desired grid-point values of the wave potential),
and {f} is a vector that contains information from the
discretized boundary conditions (5). The brute-force
approach consists of solving equation (11) for {¢} using
Gaussian elimination, which requires storage for the
matrix [A]. Note that even when there are as few as 1000
unknowns, [A] contains 1000 x 1000 complex elements.
Although, with considerable effort, advantage can be
taken of the sparsity of [4] to store it in a ‘packed form”’,
Houston® has noted that ‘even memory requirements of
the packed form ... are excessive’. Experience indicates
that solution by direct Gaussian elimination is practically
impossible for regions larger than about ten times the
wavelength squared, due to computer storage problems.

3. SOLUTION BY ITERATION

Unlike direct methods (e.g. Gaussian elimination),
indirect (iterative) methods do not require the storage of
[A], and hence can be used even on large domains. For
convergence of such procedures, the coefficient matrix
[A] must usually be strictly diagonally-dominant, or it
must be symmetric and positive-definite?®. However,
equation (10) does not lead to a diagonally-dominant
matrix: the sum of the coefficients of the non-diagonal
elements in the matrix (=4, resulting from the first four
terms) is usually larger, in absolute value, than the
coefficient of the diagonal element, (viz, (KAx)? — 4). Also,
the presence of complex quantities in the boundary
conditions usually renders [A] non-Hermitian, and hence
not positive—definite. Conventional iterative methods (e.g.
Jacobi, Gauss-Seidel, SOR, etc.) therefore do not
guarantee convergence when applied to equation (11). Of
particular interest to us is the conjugate-gradient (CG)
method for solving large sets of simultaneous equations;
this iterative procedure has been shown to converge
several orders of magnitude faster than many other
schemes??:3% for instance, for the finite-differenced
Laplace equation. However, the CG method converges
only when the system matrix is symmetric and positive—
definite. Although our system matrix [4] is symmetric,
it is not positive-definite, and the basic conjugate gradient
method will not work without some adaptation. A remedy
is to use the Gauss transformation, i.e. multiply equation
(11) by [4*], the complex conjugate transpose of [A]:

[4*1041{¢} = [4*1{/f}- (12)

The new coefficient matrix [A*][A] is always symmetric
and positive-definite, and the modified CG procedure for
equation (12) will converge. The algorithm, which we shall
refer to as algorithm 1, is as follows3!: =~

1. Select trial values ¢, (i.e. i = 0" iteration) for all grid
points where the solution is desired.
2. Compute for all points ro = f— A¢, and py = A*r,.
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3. Compute for the i'® iteration:
| A*r;| 2
%=
[ Ap:]
. Update ¢;,, = ¢; + o;p; for all points.
. Check for convergence of solution.
. Compute, for each grid point, r;y, =r; — o; Ap;.
. Compute for the i iteration:
/} _ IA*rl'+l l 2
- fA*r {2

~N N

8. Compute p;yy = A*ryy + Bipi.
9. Seti=i-+1, and go to step 3.

Note that each premultiplication of any vector (say g)
by [A] is simply equivalent to obtaining the finite-
difference approximation to V?g+ K2g for each grid
point. The g values on the boundaries needed for the
product Ag are determined using the finite-difference
form of the boundary conditions applied to g, ie.
g(boundary point)={. g(internal point). Note that the
homogeneous forms of the boundary conditions have to
be used while computing Ag. For Ag — f needed in step
2, the actual boundary conditions are used, i.e. g(boundary
point) = {. g(internal point) + 6. As [A*] differs from [A]
only in the complex diagonal elements (arising from the
complex boundary conditions), multiplication of any
vector g by [A*] is the same as multiplying it by [A4],
except that g(boundary point)={*. g(internal point),
where {* is the complex conjugate of {. The factors « and
B involve the product |d|? =(d, d)* = £ d;.d;*, where d;
represents elements of the vector d.

The procedure is convenient to implement even on
non-rectangular domains, since the algorithm simply
hops from one grid point to the next, and no matrix needs
to be stored. In fact, only storage for the three arrays r,
p, and ¢ are needed, ie. if there are 1000 unknowns,
storage is required for only 3000 complex values.
Convergence of the iterations is assured, and the solution
should require a maximum of 1 iteration per grid-point32.
The criterion for convergence used in our study was:

(V2 + K3¢))
el

where the summations extend over all grid-points and ¢
is a prescribed tolerance. Checks for convergence were
made every 100 iterations.

The procedure described above requires very little
programming manpower, but convergence, although
guaranteed, is rather slow. This is due to the coefficient
matrix [A*][ 4] of the transformed equation (12) having
a far wider spectral range than the original matrix [4].
The convergence properties can be significantly enhanced
by using a real matrix Q (to be specified shortly) to
precondition (12):

[01'[A1{é} =[Q1"{/},

or
([O17'[A1[01™T) ([Q1"{¢}) = [Q1~*{/},

which may be written as

[A1{¢} ={f}. (13)
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where
[AT=([Q1'[41[C1™ ™), {¢'} =([Q1"{¢}. {"}
=[0]17'{f}. (14)

Now performing the transformation on the preconditioned
equation (13), we have

[A™]LAT{¢} = [A*]{S}. (15)

In terms of the primed variables, the solution algorithm
for equation (15) is identical to algorithm 1 for equation
(12). In terms of the original variables (after some
manipulations described in Appendix A), the resulting
algorithm (algorithm 2) is:

1. Select trial values ¢q(i.e. i = 0™ iteration) for all grid
points where the solution is desired.

2. Compute for all points Ry=A*M~}(f— A¢d,) and
Py=M"'R,.(The matrix M~ is defined in equation
(16) below.)

3. Compute for the i** iteration:

o= (Ri’ Al_lRi)

" (Ap, M7 4p)
. Update ¢;,, = ¢;+ o; P; for all points.
Check for convergence of solution.
Compute, for each grid point, R;,;=R;
—o; A*M ' Ap;.
7. Compute for the i'™® iteration:
ﬁ-=(Ri+l’ M_lRi+1)

' (Ria AI-IRE)
8. Compule Pl'+l == M_lri+1 + ﬂfP".
9. Seti=i+ 1, and go to step (3).

SNV

In this algorithm,
M=00" or M~ '=Q TQ™! (16)

The procedure described above follows the approach
of Bayliss et al.?' who rigorously obtained the precon-
ditioner Q required to substantially improve the
convergence rate. We choose a minor modification
proposed by Axelsson et al.®® that yields:

Q=02 - @w]™"*(Do + wLo)Dg /2, (17)

where Dy, Lo, and U, are the diagonal, lower, and upper
triangular matrix components of the matrix A4,, which is
obtained by sctting K=0 in the matrix A. (ie.
Do+ Lo + Uy = Ay, where A4, corresponds to the discrete
Laplacian.) The factor w is a scalar relaxation parameter
analogous to that encountered in SOR. The implementa-
tion of algorithm 2 is not very different from that of
algorithm 1, except for the computations involving [M].
Specifically, we have to calculate products of [M ~ 1] with
several other vectors. If Y denotes the product MR,
then the use of equations (16) and (17) yields:

Y =(Dy+ @Ugy) " 'Do(2 — w)(Dy + wLo) " 'wR. (18)

(since Ay is symmetric and thus LY = U,). Equation (18)
is first rewritten as:

Y' = (Do +wLy) 'wR | (19)
Y = (Do + @Uq)~1Dg(2 — )Y’ 0)

The product, equation (18), is carried out in two steps.
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First Y’ can be determined, given R, through manipulation
of equation (19) as:

Y' =Dg'o(R — LyY'), 1)

which is equivalent to sweeping the grid from corner to
opposite corner (point (1, 1) to point (M, N)), constructing
the vector

o —2 2\t o Y'(i—1,j))
Y@, j)= (—Ax—z + F) w[R(l, N— (T

Yi,j—1)
+ T)] (22)

by using values calculated along the way. Y can then be
obtained from equation (20) as:

Y=Q2-w)Y —Dylol,Y, (23)

which is equivalent to sweeping the grid in reverse order,
constructing the vector

Y(i,j)=(2—w)Y'(i,j)—(‘2 —Z)w(m

Azt Ay? Ax?
Yi,j+ 1)
+ A ) (24)
Thus, the product of [M~!] with any vector can be
achieved by performing a forward and a backward sweep
on the Laplacian, as in SSOR. Note that equations (22)
and (24) apply to internal grid points. Boundary values
of Y’ required in the sweep are determined from R (and
similarly those of Y from Y’) using homogeneous forms
of the original boundary conditions with K = 0. For the
boundary conditions described in Section 2, these usually
reduce to simply ¢ =0 or d¢/dn=0.

Although algorithm 2 requires greater effort to code
and performs more arithmetic operations per iteration
than algorithm 1, convergence is reached after substantially
fewer iterations, resulting in considerable savings of
computer time (see Section 4).

4. MODEL VERIFICATION

The models developed in the preceding section were used
to simulate several cases of combined refraction-diffraction
with and without significant reflections, and of wave
reflection—difiraction in harbours. The results were
compared with other mathematical solutions and labora-
tory data. First, we describe model simulations of wave
propagation over varying bathymetry (in intermediate
water depths). Three bathymetric configurations were
considered: a circular shoal, an elliptic shoal (each
surrounded by a region of constant depth), and more
complicated bathymetry varying throughout the domain.
Data for these cases were obtained in hydraulic models
by Ito and Tanimoto®*, Vincent and Briggs®>, and
Berkhoff et al.>* respectively.

Both numerical algorithms described above were used
and yielded almost identical results, as expected. These
results matched the laboratory data extremely well in all
three cases. For brevity, we present only one set of results,
pertaining to wave propagation in the third case (over
the complicated bathymetry used by Berkhoff et al.2*).
The bathymetry (Fig. 2) consists of an elliptic shoal

10r hto%. j;l=lssc

—— ————

re———— 1 Computational
domain of
Berkhoff et al. (1982)

-10 -5 0 10
x in m
4 | ¥ Inmeters.
shoal boundary
v 2 2 h=0.45m
X Yy
( 4 )+ (T) - outside slope
- ! »
0 3 y'inm
h=0.45-0.02(5.84-y) shoal thickness =
outside shoal 0. 0_5,‘_ 2,y 2
o3 ) (55%) ¥ —
JARN
slope 1:50 \J
et T 77777 7>, h=0.4
R R s 0.45m 7

-3 1] 3 f
> y'inm

Fig. 2. Bathymetry from hydraulic model of Berkhoff et
al. (1982)

situated on a bottom sloping at an angle to the incoming
wave direction. This case is a perfect example that
demonstrates the advantages of the iterative method over
conventional models. In addition to obtaining laboratory
data, Berkhoff et al.%* constructed a finite-element model.
However, thier computational domain (Fig. 2) covered
only about 31% of the laboratory model, because the
solution on the full model region would have required
too many grid points. The iterative algorithms, on the
other hand, can easily handle the entire domain’(and
larger domains as well). The results discussed here (Fig.
3a-h) were obtained with 220 x 200 = 44,000 nodes*. In
Fig. 3(a-h) the numerical results and laboratory data of
Berkhoff et al.** are compared with the iterative model
results. Overall, the agreement is reasonably good. Most
important, the iterative model results are extremely close
to the results of the pseudospectral model developed by
Panchang and Kopriva'®, which also entails no physical
approximations. It is satisfying that two models containing
similar physics produce almost identical results. (The
disadvantage of the pseudospectral model relative to the
present algorithm is that it is a hyperbolic model using
a non-uniform Chebychev grid, and that the timestep is
dictated by the smallest grid-size and the CFL criterion.
The difficulty with hyperbolic models is noted in Section
1)

*Recall that in the published works, the largest refraction—diffraction
problem solved by conventional methods had roughly 10,000 nodes.
Kostense et al.*¢ also report the solution of large problems, but give
no description of their procedure.
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Fig. 3(a-h}. Wave height comparisons for bathymetry of Fig. 2
Although the mismatch between the present numerical calculating the wavenumbers:

results and data seen in Fig. 3(a-h) is within the 2 1 2 5 ;
range of contemporary short-wave models, Kirby and 0 = gk[1 + (ka)°F Tanh>(kd)] Tanh[kd-}-(ka)Fz] (25)
Dalrymple37 have shown that the inclusion of nonlinear where

effects can lead to a better fit. One approach proposed

by Kirby and Dalrymple*® consists of using the following . _ cosh(4kd) + 8 — 2tanh*(kd) and F,= (___kd_)4
nonlinear dispersion relation (instead of equation (2)) for ! 8 sinh®*(kd) sinh(kd)
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and a is the wave amplitude. This dispersion relation can
be used for a wide range of water depths and wave
conditions. Since equation (25) involves the unknown
wave amplitude (the calculation of which is our objective),
the solution process now requires a round of iterations
for establishing the correct k. First, the elliptic problem
is solved with the linear dispersion relation (2); these
solutions are discussed above. The.computed amplitudes
are then used in equation (25) to obtain new estimates
of k, and the elliptic problem is solved again using the
iterative algorithms. This procedure is repeated 5 times,
using equation (25) and the amplitudes computed in the
previous round to update k. For a given set of k’s, the
iterations for the elliptic problem are stopped when the
tolerance ¢is 10~ 4. Solving this problem is thus equivalent
to simply solving the linear problem several times, with
a different set of wavenumbers used each time. The
iterative method is particularly efficient for handling this,
since successively fewer iterations are required in each
round to obtain a specified level of convergence; this is
in contrast to the conventional direct method, where each
round would require the same effort for constructing and
inverting the matrix equation. The solutions obtained are
compared with the previous linear solutions and data in
Fig. 4(a-h). The agreement between the nonlinear
solutions and data is excellent; the nonlinear results
clearly yield a substantially better fit with data than the
linear model results, particularly in the side-lobes of
Fig. 3(c—e). This example shows that the present model
can be efficiently used in either the linear or nonlinear
mode. The comparisons of model results with laboratory
data for the other two shoal cases were similarly very
good, although only the linear case was examined.

Although it is possible to simulate wave propagation
in the above cases using other simpler models (e.g.
RCPWAVE, PEM, etc.), these models cannot be used in
the presence of strong reflections and/or lateral scattering.
Since the present model has no such limitations, it can
be easily applied even when a shore-protection structure
such as a seawall is placed at the downwave end of the
domain of Fig. 2 (replacing the outgoing boundary
condition used earlier); the results are presented in
Fig. 5 as a contour diagram. These clearly indicate a
standing-wave pattern due to the presence of the seawall,
and consequently the wave heights are much larger. The
asymmetry due to the bathymetric effects is also more
pronounced than in Fig. 4(a—e). No experimental data
are available for verifying these predictions, but the results
of two other models that can handle reflections, the EVP
and the pseudospectral models were very similar
(although not identical, chiefly because of grid-spacing
limitations of these latter models.)

Because the iterative algorithm is so versatile, two
additional experiments were performed with this bathy-
metry by inserting a breakwater halfway across the
domain, not too far from the seawall. Reflective boundary
conditions were applied on each side of this breakwater,
which was given a thickness equal to one grid size. The
two experiments differed in the location of the breakwater;
it was located at y=—5 m and y= —4.4 m in the two
experiments. The small displacement was chosen to
correspond to half of the local wavelength (n/K). When
the results (Figs 6a and b) are compared and contrasted
with the results in the absence of the breakwater (Fig. 5),
important differences strike the eye.

First, the incoming beam wandering along the middle
of the domain is intercepted by the tip of the breakwater;
a part of it is reflected and another part goes forward,
undergoing severe diffraction. Upwave from the breakwater
(toward positive y), the reflected ray disperses somewhat
and leads to a noticeable accumulation of energy to the
left of the domain. On the right side, the local phases
change considerably from run to run, but the overall
pattern seems to remain the same, presumably because
the incident beam hits the breakwater at an angle favoring
reflection toward only one side (the breakwater side).

Behind the breakwater, the solution is governed by the
diffraction of the incident beam upon encountering the
breakwater tip. It is considerably affected not only by the
presence of the breakwater but also by its exact position.
Indeed, in one case (breakwater at y = —5; Fig. 6a), the
semi-enclosed area is shielded by the breakwater, and the
energy is relatively low, while in the other case
(breakwater at y = —4.4; Fig. 6b), a large standing wave
is present, indicating resonance. Since the wavelength is
dependent on the local bathymetry, the determination of
the exact breakwater position(s) for which resonance
occurs could hardly have been predicted a priori. Energy
supplied to the resonant wave is provided by the
diffraction of the incident, central beam as it hits the
breakwater tip, which is a complicated problem. Thus,
an a priori determination of the height of the standing
wave would have been impossible.

Finally, we describe model simulations of wave
propagation in a rectangular harbor connected to the
open ocean (Fig. 7), for different incident wavelengths
(harbor resonance). Such a case can be conveniently
handled by the boundary element method if the depth is
constant. Alternatively hybrid finite-element formula-
tions?5-*° may be applied if the domain is small. The
iterative procedure developed here permits us to cover a
much larger portion of the ocean region. This is particu-
larly advantageous because the results are somewhat
sensitive to the proper formulation of the outgoing
boundary condition and hence also to the extent of the
infinite ocean included in the simulation'”. Here we
approximate the infinite ocean outside the harbour by a
finite rectangular region (Fig. 7) of approximately the
same size as that used by Madsen and Larsen'”. Equation
(7) was used on the incoming boundary, and equation
(9) on the artificial boundaries (with « =0, 0.5, 1.0 on the
lateral boundaries). The computed amplification (for
several different wavelengths) at the center of the backwall
of the harbor (Fig. 7) are compared with the theoretical
solution of Lee*? in Fig. 8, and the simulation may clearly
be considered successful.

The computer runs described above were made on the
IBM3090 machines at the University of Maine and the
Cornell Theory Center. The computer time required for
model convergence depends, of course, on the starting
values ¢ and the prescribed tolerance e. In all examples
reported here ¢, was assigned a value of (0.5 + 0.5i) for
uniformity, although better choices are possible in some
cases. The value of ¢ had to be determined by
experimentation, and it was found that 107", where n is
about 5, normally sufficed. The results shown in Fig. 3
were obtained with ¢=10"7 and required about 1250
seconds of CPU time using the preconditioned algorithm.
However, identical solutions were obtained with £ = 1074,
requiring only 400 iterations and 220 seconds. Tables 1-3
compare the performance of the two algorithms (with a
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Fig. 4(a-h). Wave height comparisons for bathymetry of Fig. 2; linear and nonlinear models

much higher n chosen in some cases for illustration). The
comparisons are made on the basis of either the computer
time required to obtain a specified residual ¢ or the value
of the residual after a certain number of iterations. It can
be seen that Algorithm 2 is extremely eflective in reducing
the required computer time, and in some cases (the harbor
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problem), requires less than an eighth of the time required
by the unpreconditioned Algorithm 1 (Table 3, w = 1.75).
The optimum value of w of course depends on the
eigenvalues of the problem, and no rule exists to establish
a best value a priori. However, it apears that substantial
benefits would accrue with @ = 1.5.
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Fig. 5. Computed wave heights for bathymetry of Fig. 2 with a seawall

5. SUMMARY AND CONCLUDING REMARKS

The usefulness of the mild-slope or combined refraction—
diffraction equation in producing good simulations of
wave behaviour in a wide variety of situations has been

demonstrated by many investigators. Since it eliminates

the limitations of conventional refraction analyses (viz.
existence of caustics or sometimes a paucity of wave rays
in regions known to have appreciable wave energy) and
since it can be used for a wide range of ocean wave
frequencies, its development may be considered to be a
major advance in coastal engineering.

One disadvantage of the mild-slope equation is that
until now it could be solved (with no physical
approximations) only for small coastal domains (roughly
10 wavelengths). Prior to this study, the largest problem
tackled with this equation contained 10,000 nodes and
involved considerable difficulty®. This translates (for a
square domain) to only 100 nodes in each direction. The
difficulty stems from the exorbitant storage requirements
associated with the solution of the elliptic governing
equation by direct (non-iterative) methods.

For larger regions, approximate models!3~1541 can
be used when appropriate; these avert computational
difficulties, but are applicable only if reflections by
coastlines, seawalls, islands, and bathymetry are negligible,
and/or the wave propagation exhibits paraxiality. These
models are therefore inappropriate in several situations.
For example, in coastal regions of the Gulf of Maine, the
coastlines are rocky and irregular, the bathymetry is
complex, and there are internal boundaries (rocky

islands). The approximate models frequently cannot be
used; on the other hand, the complete (non-approximate)
problem is difficult because the domains of interest are
large. The need for alternative models was also
highlighted in a recent study by Panchang et al.*2, where
the mild-slope equation was shown to yield realistic
simulations of irregular sea-states. However, the
approximate model used in that study is not sufficiently
general to simulate the response to the different
components that comprise the incident wave spectrum
(depending on the bathymetry, domain geometry, the
input spectrum, etc.), and it would be cumbersome to use
different models for different components.

In this paper, two algorithms are presented by which
the problem can be solved on large coastal domains and
with no physical approximations. Storage problems that
beset conventional models are completely ecliminated
through the development of the CG iterative algorithms
applied to the Gauss-transformed equation. Algorithm 1
is simple, easy to program, and can be conveniently
applied to non-rectangular regions. It is, however, slow.
The preconditioned algorithm 2, on the other hand, is
vastly superior in terms of its rate of convergence. Unlike
direct methods, these algorithms require little preprocessing,
and a minimum of computer storage. They are,

Fig. 6. Contour diagram of wave heights on the same
domain as for Fig. 5, but with a reflective breakwater
inserted half-way across the domain: (a) breakwater at
y=—5m, (b) breakwater at y= —4.4 m. (See Fig. 5
Jor legend)
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furthermore, guaranteed to converge. Section 4 also
demonstrated that these methods are amenable to the
inclusion of nonlinear effects. Prior to this, such effects
have been included only in the framework of the parabolic
approximation of the mild-slope equation37-3%43, For
incorporating nonlinearities in the elliptic model, the
iterative approach is particularly efficient, since each
successive round requires less effort; this is further benefit
relative to the direct method.

Using the iterative procedures described in Section 3,
coastal wave propagation problems hitherto considered
too large (e.g. 44,000 grids) have been successfully solved
with reasonable computational effort. The procedures
were applied to several configurations of bottom
topography, with and without significant reflections, and
for rectangular and non-rectangular domains. The results
compared extremely well with laboratory data and other
mathematical solutions. The insertion of a breakwater
and the variation of its position illustrated the high degree
of sensitivity of the wave energy distribution to reflection,

Table 1. Performance of iterative algorithms for batlhymetry from
Berkhoff et al. (1982)

Algorithm o # of iterations ¢ CPU time (sec)

1 16,800 097 x 1077 2769
2 1.0 2,000 021 x107% 1266
2 1.2 2,000 069 x 1077 1264
2 14 2,000 024 x10"7 1257
2 1.6 2,000 022x107¢ 1270
2 1.8 2,000 0.13x107* 1267

Table 2. Performance of iterative algorithms for bathymetry from
Berkhoff et al. (1982) in the presence of a seawall

Algorithm o # of iterations ¢ CPU time (min)

| 49,200 099 x 1077 140
2 1.0 5,500 0.33x107° 60
2 1.2 5,500 0.71 x 1077 60
2 1.4 5,500 0.81 x 1077 60
2 1.6 5,500 0.21 x 1073 60
2 1.8 5,500 049 x 107+ 60

Table 3. Performance of iterative algorithms for harbor resonance
problem

Algorithm @ # of iterations ¢ CPU time (sec)

1 3,262 1 x 10710 392
2 1.00 747 [x1071° 131
2 1.25 494 1x1071° 87
2 1.50 337 1 x 10710 60
2 1.75 255 1x 10710 46
2 1.80 266 I x1071° 48

diffraction, and resonance. Hence, it is imperative for the
coastal engineer, always interested in the worst-case
scenario, that many experiments be performed by varying
the model geometry. The present algorithm provides the
needed versatility. The procedures are therefore useful for
estimating wave heights, and complement the existing
suitc of wave models used by engineers for various
applications. Moreover, the iterative procedures can
easily be generalized to include modifications of the
mild-slope equation that include bottom dissipation®?,
currents*?, or a partial relaxation of the ‘mild-slope’
requirements?>. Finally, the basic iterative procedures are
not specific to the finite—difference technique and can be
used in conjunction with finite elements for better
modelling complicated coastal boundaries and harbors.
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APPENDIX A
Algorithm 1 applied to equation (15) yields:

ro=f"—A'"¢5 =07/ — Ady);
Po=A*ro=0714*Q7r,

iy =it api= P =i+ 0,0 p;
Tivy =ri_aiA,pi=ri_aiQ_lAQ_Tpi
Pis1=A*ri 1+ Bipi=Q ' A*Q Ty + Bip;

where

_l4#n1? Q7 Arg T
‘ |A'Pi|2 IQ“IAQ_TP.'I2

and a similar expression for f.

Creating new variables s;=Qr; and P,=Q " Tp,, and

recalling (16),

So=Jf— Ady;

P0=M_1A*M_lso
Giv1 =i+ Py
Siv1 =8 — AP,
Piyy =M'1A*M_ls,-+1 + B:P;
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where so that
C1papg- —tgapg- IRy Q™ *Risy |2
|0~ 14*M " 5, |0 A*M 5,4, |2 =L Ril” onq g =1 Rl
== and ;= i -14p.|2 i -1p |2
% |Q~1Api|2 an ﬂ' |Q_1A*1W_1s,-|2 |Q AP.' IQ R¢|
Finally, Q"' can be eliminated from the « and § by
Further simplification can be obtained if, as suggested by recognizing that for some vector T,

Bayliss et al.2!, we introduce the vector |071T|? =(Q~'T, 0~ T)=(T, 0-TQ~"T) = (T, M~'T)

R;= A*M™1s; which is the formulation used in Section 3.
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