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SIMULATION OF WAVES IN HARBORS USING
TWO-DIMENSIONAL ELLIPTIC EQUATION MODELS

VIJAY PANCHANG and Z. DEMIRBILEK

Ports and harbors are the center of social, cultural, economic, governmental, mili-
tary activities and are closely tied to the national economy of the continental United
States. Many local and state economies are dependent on waterborne commerce
as a major source of transport and enhanced port capacity is vital to Nation’s
economy, trade and commerce. Several major U.S. ports/harbors currently have
renovation plans in response to the expansion of ocean-borne world commerce and
coastal engineering projects (dealing with wave agitation in harbors caused by ex-
pansion (landfills), channel deepening and widening, flaring channels for improved
navigability, channel maintenance and other infrastructure modifications) generally
require a detailed knowledge of the wave field in the project areas. Physical and
numerical model studies are often conducted concurrently for these projects to eval-
uate technical feasibility and to optimize design alternatives. This paper provides
a comprehensive review of mathematical modeling procedures developed in recent
years in the area of elliptic wave equations suitable for simulating waves in ports
and harbors. Modeling techniques and extensions of the well-accepted mild-slope
wave equation to include steep-slopes, realistic boundary conditions, dissipative
mechanisms like friction and breaking, wave-wave and wave-current interactions
are discussed. Assumptions such as constant water depths outside the modeling
area and fully reflecting exterior coastlines, which plagued earlier elliptic models,
have been eliminated in recent treatments of the open boundary. The development
of several improved boundary conditions that can be used along coastlines, islands
and structures (jetties, breakwaters, etc.) in the modeling domain is discussed.
These improvements in the boundary conditions, along with the inclusion of dissi-
pative effects like breaking, allow for more accurate treatment of the scattered and
reflected waves throughout the model domain and lead to a realistic representation
of waves in complex regions of highly varying bathymetry and boundary types. We
describe advances pertaining to the computing efficiency of elliptic wave models
which has until recently been a major drawback for these models, Using advanced
parallelization schemes, we have been able to reduce the computational time for
prototype-scale applications to the order of a few seconds for monochromatic waves
and to less than one hour for the simulation of multi-directional irregular sea states.
We present a computational framework for including wave-wave and wave-current
interactions in elliptic wave modeling. Application of elliptic modeling methods
to wave transformation in the Los Angeles/Long Beach Harbor complex and in
Barber’s Point Harbor are described. Some research areas have been identified.
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1. Introduction

Ports and harbors play a vital role in the growth and well-being of many
nations. They are important hubs for commercial, military and recreational
activities. For instance, about $600 billion in foreign trade passed through
ports in the United States in 1997; this trade is projected to triple by 2020
(YOTO, 1998). Engineers must provide the infrastructure that can handle this
growth. Harbor facilities must accommodate ever larger ships (“megaships”)
with increasingly demanding schedules and complex environmental regulations.
It is therefore critical that these facilities be designed in a manner that enhances
efficiency and safety of harbors operations like cargo loading /unloading, etc.

One of the physical features that can have an adverse impact on harbor
operations is the wave climate. For example, some waves (not necessarily big
waves) lead to undesirable vessel motions (resulting in operational difficulties
such as broken mooring lines, downtime for cargo handling, etc.) or undesirable
sediment movement (resulting in more frequent dredging). Reliable estimation
of wave conditions in and around a harbor is vital to the success of harbor
operations. This estimation must often be accomplished through mathema-
tical modeling techniques. However, most harbors confront the modeler with
numerous complexities. Geometrically, as may be seen in Fig. 1, the domain to
be modeled may include completely arbitrary coastline shapes and. bathymetric
features as well as man-made structures like piers, jetties, breakwaters, etc.
These features induce wave refraction, diffraction, reflection and dissipation
by friction and breaking to varying degrees. The incident waves of interest
may cover a wide spectrum, from very short waves to extremely long period
waves that cause resonance and may approach the harbor from any direction.
For short waves, the number of grids needed to discretize the domain can be
extremely large, making the modeling difficult. Longer waves may need fewer
grids, but require a better specification of boundary reflectivities since they
are more susceptible to reflections in all directions from structures, coastlines,
and bathymetric slopes. In addition to these complexities, the modeler may
also have to account for the effects of the interaction between various wave
components and of tidal or other currents which can magnify or diminish the
wave climate in different parts of the domain.

In this paper, we describe a methodology that has become well-accepted
in recent years for modeling the situation described above (See Panchang
et al., 1999 for a review of recent coastal wave modeling methods). In its
basic form, the methodology is based on solving the following two-dimensio
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Fig. 1. Los Angeles/Long Beach Harbor area. Numbers show gage locations for hydraulic
model study (after Seabergh and Thomas, 1995).

elliptic equation,
V. (CC,V¢) + k*CCy¢ =0, (1)

where,
é(z,y) = complex surface elevation function (= ¢1 + ida)
e /=T
o = wave frequency under consideration
C(z,y) = phase velocity =a/k
Cy(z,y) = group velocity = 80/0k
k(z,y) = wavenumber (= 27 /L) related to the local depth d(z,y)

through the dispersion relation,

o? = gk tanh (kd). 2)
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The wave height H can be obtained from complex surface elevation function
¢ as follows,

H=3§ (63 + ). 3)

Essentially Eq. (1) represents an integration over the water column of three-
dimensional Laplace equation used in potential wave theory. The integra-
tion, originally described by Berkhoff (1976) and Smith and Sprinks (1975), is
necessary because the solution of the three-dimensional problem is computa-
tionally difficult for harbors with a characteristic length that is several times
of the wavelength. The integration is based on the assumption that the verti-
cal variation of the wave potential is largely the same as that for a horizontal
bottom, i.e.,
ol 0) ~ ZBEEL D g0 ). @

This approximation is obviously valid for a “mild slope” characterized by
|Vd|/kd < 1, a criterion that is usually met in practice (extensions to steep
slopes are described later). Being elliptic, Eq. (1) represents a boundary value
problem which can accommodate internal nonhomogeneities. It hence forms a
widely-used basis for performing wave simulations in regions with arbitrarily-
shaped (manmade or natural) boundaries and arbitrary depth variations. Un-
like “approximate” mild slope wave models (e.g., REFDIF and RCPWAVE
described by Dalrymple et al., 1984; Kirby, 1986; Ebersole, 1985), there are no
intrinsic limitations on the shape of the domain, the angle of wave incidence, or
the degree and direction of wave reflection and scattering that can be modeled
with Eq. (1). In essence, Eq. (1) represents the complete two-dimensional wave
scattering problem for the nonhomogeneous Helmholtz equation as demon-
strated by Radder (1979). While it is valid for a monochromatic (single in-
cident frequency-direction) wave condition, irregular wave conditions may be
simulated using Eq. (1) by superposition of monochromatic simulations.

For further development in this paper, we may consider the following
extended form of Eq. (1),

V- (CC,V¢) + (k*CC, +iCoW)p =0, (5)

in which a dissipation term W has been included. By separating the real
and imaginary parts of Eq. (5), Booij (1981) has shown that Eq. (5) satisfies
the energy balance equation in the presence of dissipation. The term W may
represent breaking and /or friction and is described later.
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Several computational models based on Eq. (1) or Eq. (5) have been
developed in recent years. These models differ in the choice of the numeri-
cal method used (e.g., finite-difference method, boundary element method,
finite element method), in the choice of boundary conditions, in the method
used to solve the linear system of equations that results from discretizing the
elliptical governing equation, and in the inclusion of additional mechanisms.
In this paper, we provide a review of the modeling techniques pertaining to
the application of Eq. (1) to harbors. The layout of this paper is as follows.
Sections 2 and 3 describe the various kinds of boundary conditions and nu-
merical solution methods that have been developed in recent years. Section 4
describes the incorporation of additional mechanisms in Eq. (5). The appli-
cation of a comprehensive finite-element model to simulate waves in the Los
Angeles/Long Beach harbor complex (Fig. 1) and in Barber’s Point Harbor is
described in Sec. 5.

2. Boundary Conditions

Domains on which the elliptic equation Eq. (5) is solved are enclosed by closed
boundaries (represented by coastlines and surface-penetrating structures like
pier walls or pier legs, breakwaters, seawalls, etc.) and open boundaries (which
represent an artificial boundary between the area being modeled and the sea
region outside). A separation between the model domain and an outer water
area from where no waves enter the model domain (e.g., a creek or tributary
at the backbay or down wave end of the domain) may be considered to be
a fully-absorbing closed boundary. An open boundary is considered to be
the one where an incident wave is specified (and may contain other radiated
waves). Along all boundaries, appropriate conditions must be specified to
solve Eq. (1); however, even in the best of circumstances, only approximate
boundary conditions can be developed (e.g., see Dingemaans, 1997).

2.1. Closed boundary conditions

Along coastline and surface-protruding structures, the following boundary con-
dition has traditionally been used (e.g., Berkhoff, 1976; Tsay and Liu, 1983;
Tsay et al., 1989; Oliveira and Anastasiou, 1998; Li, 1994a),

¢

a = a¢, (6)
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where n is the outward normal to the boundary and a is related to a user-
specified reflection coefficient as follows,

a-ikl_K'
i 5

()

K, varies between 0 and 1 and specific values for different types of reflecting
surfaces have been compiled by Thompson et al. (1996).

It may be verified that Eq. (6) is strictly valid only for fully-reflecting
boundaries (i.e., K, = 1). For partially reflecting boundaries, it is valid
only if waves approach the boundary normally. For other conditions, Eq. (6)
is approximate and may produce distortions in the model solutions. These
limitations may be eliminated by describing the solution at the boundary more
fully as a sum of incident and reflected waves,

¢ = A{explik(ncos + ssinf)] + K. explik(—ncosf + s sinf@ + 8)]}, . (8)

where A is the amplitude of the approaching waves, @ is the direction at which
they intersect the boundary (6 = 0 for normally incident waves), s is the coor-
dinate along the tangent to the boundary, and f is a phase shift between the
incident and the reflected wave. Equation (8) leads to the following boundary

condition,
9¢ _ " 6.1—!(',.1=,xp(ik:ﬁ)

an o 1+K.-eXP(ikﬁ)¢' ©)

Unfortunately, @ and J are not known a priori inside the model domain and
must be estimated by approximation. For fully absorbing boundaries (K, = 0),
Li and Anastasiou (1992) and Li et al. (1993) have used Eq. (9) after estimating
@ from Snell's Law and the deep-water incident wave angle. Alternatively,
Isaacson and Qu (1990) estimated @ as follows,

6 = arctan{(8x/8s)/(dx/dn)} , (10)

where y is the argument of the complex quantity ¢ (i.e., the phase of ¢). For
implementation, they first used Eq. (6) as a boundary condition, obtained x
from the results, determined 6 from Eq. (10), used Eq. (9) as a boundary
condition to perform a second iteration of the model, recalculated x and 6,
performed a third model iteration using Eq. (9) and so on. Like Pos (1985),
they assumed 8 = 0 while using Eq. (9), based on limited numerical tests
that showed little sensitivity to 8. Clearly, like the Snell's Law approach,
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Eq. (10) is valid only for K, = 0 (although problems with nonzero K, were also
considered). To include the effect of the reflected waves (i.e., the second term
in the right hand side of Eq. (8)), Isaacson et al. (1993) suggested estimating
6 as follows,

0 = (1/k) arcsin {8x/8s} . (11)

Again, an iterative method with repeated model calculations were needed.
Steward and Panchang (2000) analyzed these methods and noted difficulties
with convergence of the above iterative methods and with the quality of the
solutions obtained with Egs. (10) and (11). They were able to eliminate these
difficulties by estimating @ from the following expression,

_0x /(0x , 2K.k(cos(kB) + Kr)
ta.nﬂ—a/ (%+1+2K,cos(kﬁ)+fr3 cos(e)). (12)

Equation (12) is a generalization of Eq. (10) that allows nonzero K, and S.
For a detailed comparison of results, see Steward and Panchang (2000). As
an example, Fig. 2 shows a simulation of waves propagating into a rectangular
harbor area obtained with Eq. (12). Unlike the results demonstrated by Stew-
ard and Panchang (2000) and by Beltrami et al. (2000) using other boundary
conditions, Fig. 2 contains no spurious oscillations or noise.

Despite the increasing sophistication seen progressively in Eqs. (6) and (9)
and in the various ways of estimating 8, some fundamental problems remain.
The most important one is inherent in Eq. (8), i.e., the assumption that the
total wave field near the boundary can be represented either by one set of
plane waves (in the case of Eq. (10) or the Snell's Law approach of Li et al.
(1993)) or by two sets of plane waves (in the case of Eqgs. (11) and (12)) prop-
agating in constant depth. In domains of complex shapes (as in Fig. 1) with
arbitrary bathymetry and boundaries with varying reflectivities, a complex
pattern of waves can result; simple wave trains are not easily discernible and,
as noted by Isaacson and Qu (1990), the definition of a single 6 (and A) can
become meaningless. Further, even when there is a well-defined train of waves
near the boundary (justifying the use of the above methods), precise estima-
tion of K, and /3 is still problematic. Values of K, provided by Thompson et al.
(1996) certainly do not cover full range of reflecting surfaces that the
modeler encounters, nor do they cover the dependence of these parameters
on the incident wave frequency. Efforts to incorporate the work of Dickson et
al. (1995) and Sutherland and O’Donoghue (1998) pertaining to 8 in models
such as the one described here are lacking. In some ways, it may be best to
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Fig. 2. Modeled waves in a rectangular harbor, using Eqgs. (9) and (12). Phase diagram
(shows cosine of phase angle). Semicircle represents open boundary. K, = 0 on closed
boundaries.

recognize these difficulties at the outset and use the simplest expression of
Eq. (6) by combining all the uncertainties noted above into a single parameter
a which may be regarded as a tuning parameter.

2.2. Open boundary conditions

Along the open boundary, an incident wave ¢; must be specified. Along this
boundary, however, waves backscattered from within the domain will also ex-
ist and their magnitude is generally not known. In the context of simple
rectangular domain models with one side (aligned, say, in the y direction) con-
stituting the open boundary, Panchang et al. (1988, 1991), Li (1994a, 1994b),
and Oliveira and Anastasiou (1998) have used the following condition,

a

e ik(2¢; — @) . (13)
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Equation (13) is obtained by assuming that the incident and backscattered
components along this boundary can be described by ¢; = A; exp(ikz) and
®» = Bexp(—ikz) respectively (where A; is the (specified) amplitude of the
incoming wave and B is an unknown), adding the two components and differ-
entiating. Obviously, this is valid only if the incident and backscattered waves
near the boundary are plane waves propagating in the +/— z direction.

For more complex domains involving multidirectional scattering, Eq. (13) is
inappropriate. Harbor applications generally use model domains such as that
described in Fig. 3 where the semicircle is used to separate the model area
from the open sea. In the exterior domain ', the potential ¢ is comprised of
three components,

¢=0i+ &+ s, (14)

where ¢; = the incident wave that must be specified to force the model,
¢r = a reflected wave that would exist in the absence of the harbor and

Transect 2 Incident Wave Transect 1

P, 6 P,
_V <

¥ Vx

T Qex=0i+0O,+0;

Fig. 3. Harbor wave model domain; definition sketch.
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¢, = a scattered wave that emanates as a consequence of the harbor and must
satisfy the Sommerfeld radiation condition. With appropriate descriptions for
these components, a boundary condition can be developed along the semicircle.
In traditional harbor models (Mei, 1983; Tsay and Liu, 1983; Thompson et
al., 1996; Chen and Houston, 1987; Xu and Panchang, 1993; Demirbilek and
Panchang, 1998), the exterior wave conditions are described as follows,

¢: = A;explikr cos(é — 6;)], which is the specified input, (15)

¢, = A;explikr cos(@ + 6;)], (16)

= iHn(kr)(A,,cosn&+B., sinnf), (17)
n=0

where (r,8) denotes the location of a point in polar coordinates, H, is the
Hankel function of the first kind and order n, and A, and B, are unknown
coefficients.

For the specified incident wave field given by Eq. (15), Egs. (16) and (17)
result from the solution of the relevant eigenvalue problem in the traditional
method. As demonstrated by Xu et al. (1996), however, this eigenvalue prob-
lem in which ¢, and ¢, are coupled, may be solved only under the following
conditions,

(i) the exterior region must have a constant depth,
(ii) the exterior coastlines Q,R; and QR; must be fully reflecting and
collinear.

These requ.irem'ent.s usually cannot be met in practice where the exterior
geometry varies arbitrarily and the unrealistic bathymetric representation used
by the modeler invariably has an adverse influence on the solution. In field
applications, the exterior bathymetry is irregular and the depth generally in-
creases in the offshore-direction. Condition (i) is thus violated, causing two
problems as demonstrated by Panchang et al. (2000). First, the modeler must
arbitrarily select a representative “constant” depth and test the sensitivity of
the solutions to these depths. This can be extremely time-consuming. Sec-
ond, the effect of reflections from the sloping exterior bathymetry is ignored.
These effects are often significant especially for long periods that are of inter-
est in harbor resonance studies. Condition (ii) is also problematic. Exterior
coastlines are not always fully reflecting for all wave conditions and imposing
full reflection in such cases yields extremely large amplification factors and
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rapid variations in the wave pattern in the outer regions of the domain. (See
examples in Xu et al. (1996), Demirbilek et al. (1996) and in Thompson et
al. (1996)). One may of course enlarge the interior region in the hope that these
effects do not contaminate the results in the area of interest, however, there is
no guarantee that these effects are confined to specific regions. In addition, the
extra memory requirements and grid-generation for a larger domain are usually
exceedingly demanding. Thus, while Eqgs. (16) and (17) constitute rigorous
solutions of the eigenvalue problem, their use renders the application of harbor
wave models problematic in practice. (One consequence of the above is that
many of the models in this category cannot correctly simulate fairly simple
phenomena like waves approaching a sloping beach. Investing confidence in
model results when applied to field situations is therefore difficult).

To overcome these difficulties, Panchang et al. (1993) have described a pro-
cedure that requires the exterior domain to be suitably divided into a finite
number of regions of constant depths. A boundary integral equation is then
developed for each of these exterior regions using the appropriate Green’s func-
tion. The boundary element formulations for these regions are then matched
with each other along the interfaces and with a finite-element network in the
model interior to obtain the solution. It was found, however, that this type of
model is extremely cumbersome to code and construct for general implementa-
tion. Other difficulties may also be expected if mechanisms such as dissipation,
wave-current interaction, etc., are to be introduced into the governing equa-
tion. Chen (1990) also has suggested discretizing the exterior domain into a
finite number of radial “infinite elements” with a prespecified shape function
in each element. However, this shape function is entirely dependent on the
farfield approximation for the Hankel functions, suggesting that a fairly large
computational domain is still needed.

An effective alternative is to use a “parabolic approximation” to describe

¢,|

;. 2,
n - P (18)
where,
AR o e’y P i g 18
i 2r  Bkor2’ 1T T 2kgr? (182)

where r and 6 represent the polar coordinates of a point on the open bound-
ary and kp is a representative wavenumber for the open boundary (p and g
are not unique and alternative forms, each obtained with an appropriate ra-
tionale, have been investigated by Givoli (1991), Xu et al. (1996), Panchang
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et al. (2000)). The parabolic approximation, Eq. (18), allows the scattered
waves to exit only through a limited aperture around the radial direction.
Unlike Eq. (17), it does not rigorously satisfy the Sommerfeld radiation condi-
tion. However, using this formulation decouples ¢, from the other components.
These components (¢; and ¢,) may be obtained by making a compromise be-
tween a detailed exterior bathymetric representation (which as noted earlier, is
difficult) and the constant depth representation (which is unrealistic). A one-
dimensional representation where the depths vary in the cross-shore direction
only (Figs. 3 and 4) may be selected. This is reasonable since, in general, this
is often the direction in which the depths vary the most. If natural variations
do not permit the representation of the exterior depths by only one section, a
second one-dimensional section shown as transect 2 in Figs. 3 and 4 may be
constructed. For transects 1 and 2 with varying depths, no simple analytical
expression (such as Eq. (16)) can be found for the reflected wave (since ¢; and
¢, are coupled). However, the quantity,

may be obtained by the solution of the one-dimensional version of Eq. (5)
since the depths along these transects vary in one direction only. This

—

o

Nt T
da(x)
Transect 2

Fig. 4. Two 1D transects representing the exterior bathymetry (do not have to be identical).
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one-dimensional equation is (Schaffer and Jonsson, 1992; Panchang et al,
2000),

d d
= (cc, E.g) + kCCy(kcos? 8 +iW)y =0, (20)
where, for one-dimensional geometry,
$o = Y(z) exp(ikysin¥) . (21)

Equation (21) is an elliptic ordinary differential equation requiring two bound-
ary conditions. It may easily be solved via a simple finite-difference scheme
(for the present, the dissipation factor W is considered to be prespecified).
Assuming that transect 1 extends out to a region of constant depth (or deep
water), a condition at P, may be obtained by combining a specified incident
wave,

¢i(Py) = A; exp(ikz cosb; + ikysiné;), (22)

(where A; = a given input wave amplitude) and an unknown reflected wave,
&r(Py) = Bexp(—ikz cosf; + ikysinb;). (23)

Without loss of generality, the point P; may be located at z = 0 which allows
elimination of B to yield,

% =ik cos0;(24; — ¥). (24)

At the coastal boundary point @, the partial reflection boundary condition of
Eq. (9) may be used in the following form,

&y  ivVk? - k?sin®6(1 - K,)

oz LR

where K, is the reflection coefficient for the exterior coastline (i.e., near @),
and ksin @ is constant for one-dimensional problem.

The solution of Eq. (20) using boundary conditions, Eqgs. (24) and (25),
along with Eq. (21) produces ¢ along transects 1 and 2. These solutions are
denoted by ¢o; and @pa. The desired ¢ along the semicircle may be obtained
by laterally translating ¢o; and ¢y via interpolation between transects 1 and
2 as follows,

$o = (1 — m)doy exp(—ik(r — y) sin ) + meoz exp(ik(r + y)sinb),  (26)

v, (25)
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Fig. 5. Modeled wave refraction on a sloping beach; angle of incidence 60°. Phase diagram.

where we have set y = 0 at the center of semicircle, the interpolation function
m = (r — y)/2r, r is the radius of the semicircle, y is the lateral coordinate of
the open boundary node relative to the origin of semicircle (Fig. 3).

The boundary condition for ¢ along the semicircle I' may be obtained by
using the continuity of the potential (Eqs. (14) and (19)) and its derivative
along with Egs. (18) and (26),

% _ %% _ o) - a5 (27)
Thus, the solution of Eq. (20) provides ¢o along the one-dimensional transects.
These values can be translated laterally and substituted into Eq. (27) to obtain
the open boundary condition for the two-dimensional equation of Eq. (1). Zhao
et al. (2000) and Panchang et al. (2000) have demonstrated that this procedure
provides extremely satisfactory solutions for a large number of test cases. An
example of wave refraction along a sloping beach is shown in Fig. 5. The
expected bending of the crests can be observed with no spurious effects.

3. Numerical Solution

Equation (5) is generally solved using the boundary element method, the finite-
difference method, or the finite element method. In general, finite-difference
discretizations are not well-suited to represent the complex domain shapes de-
scribed, for example, in Fig. 1. Not only are the boundaries distorted, but
the number of uniformly spaced grids may also be excessively large (adequate
resolution, typically 10 points per wavelength, demands that the spacing be de-
termined from the smallest wavelength). Most studies with the finite-difference
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method have been limited to largely rectangular domains (e.g., Li, 1994a,
1994b; Panchang et al., 1991; Li and Anastasiou, 1992). Boundary element
models can handle arbitrary shapes and require minimal storage since only
the boundaries are discretized; however, they are limited to subdomains with
constant depths only (e.g., Isaacson and Qu, 1990; Lee and Raichlen, 1972;
Lennon et al., 1982). Finite element models, on the other hand, allow the con-
struction of grids with variable sizes (based on the local wavelength) and give
a good reproduction of the boundary shapes. Most finite element models (e.g.,
Tsay and Liu, 1983; Tsay et al., 1989; Kostense et al., 1988; Demirbilek and
Panchang, 1998; Panchang et al., 2000) have used triangular elements, and
modern graphical grid generating software permits efficient and accurate rep-
resentation of harbors with complex shapes. For example, the Surface Water
Modeling System described by Zundell et al. (1998) and Jones and Richards
(1992) can be used to conveniently generate as many as 500,000 elements of
varying size, based on the desired (user-specified) resolution, and to specify
the desired reflection coefficients on various segments of the closed boundary.
The solution of Eq. (1) by the finite element method is described in detail by
Mei (1983) and by Demirbilek and Panchang (1998) when different types of
open boundary conditions are used.

Whether one uses finite differences or finite elements for discretization, the
numerical treatment of Eq. (1) with appropriately chosen boundary conditions
leads to system of linear equations,

[A][¢] = [B]. (28)

where [¢] represents the vector of all the unknown potentials. For solving
Eq. (5), a similar system results as long as W is prespecified. The matrix [A]
is usually extremely large. In earlier models (e.g., Tsay and Liu, 1983; Tsay
et al., 1989; Chen, 1990; Chen and Houston, 1987), the solution of Eq. (28)
was accomplished by Gaussian Elimination which requires enormous memory
and is prohibitive when the number of wavelengths in the domain is large (i.e.,
short waves or a large domain). Pos and Kilner (1987) were able to alleviate
this difficulty somewhat by using the frontal solution method of Irons (1970).

In recent years, the solution of Eq. (28) has been obtained with mini-
mal storage requirements for [A]. This is due to the development by Pan-
chang et al. (1991) and Li (1994a) of iterative techniques especially suited for
Eq. (1). These techniques, based on the conjugate gradient method, guarantee
convergence and have been found to be extremely robust in a wide variety
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of applications involving both finite differences and finite elements for several
kinds of boundary conditions. Hurdle et al. (1989) have used the biconjugate
gradient algorithm. This variation is efficient when it works but (as noted
by Kostense et al., 1997) it does not guarantee convergence for this type of
governing equation. More recently, Oliveira and Anastasiou (1998) explored
the use of the Generalized Minimum Residual method and the Stabilized
Biconjugate Gradient method and reported greater efficiency with finite-
difference models based on Eq. (1). With a finite-element formulation, however,
Zhao et al. (2000) found that the GMRES method of Oliveira and Anastasiou
(1998) failed to converge whereas their latter method yielded erratic efficiency.
Alternative solution techniques have also been explored by Li and Anasta-
siou (1992) who first express ¢ as exp(u) and obtain a new equation for . Since
p is sometimes a less rapidly varying function than ¢, Li and Anastasiou (1992)
suggest that as few as 2 or 3 grid points per wavelength will suffice. However,
as noted by Li and Anastasiou (1992) and by Radder (1992), the presence of
rapidly varying topography or of reflections in various directions will neces-
sitate much finer resolution (say 10 points per wavelength) and the solution
obtained by using the log of the potential may lead to excessive smoothing.
For mildly varying bathymetry with low reflections, it may in any case be
more efficient to solve instead of the “parabolic approximation” of Eq. (1)
which is intended for such applications. Li and Anastasiou (1992) have used
the multigrid method to minimize storage problems. When higher resolution
is required, though, this method does not offer any significant advantage over
the conjugate gradient schemes described by Li (1994a) and Panchang et al.
(1991) since at least one grid with the desired resolution must be constructed.
Further, the multigrid method is best suited to rectangular finite-difference
discretizations.
Another method, proposed by Li (1994b), involves solving the following
parabolic equation,
do 2
o= V- (CCyV9) + k°CCyo, (29)
where a is a constant. Equation (29) is an approximation of the time-dependent
hyperbolic wave equation associated with Eq. (1). It is solved by marching for-
ward in time until steady state is reached. Equation (29) is similar to the heat
equation and standard techniques (e.g., the ADI method) for solving such equa-
tions are used by Li (1994b). It must be noted, though, that the elimination
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of storage difficulties associated with the elliptic equation as Eq. (1) by (ar-
tificially) parabolizing it (as Eq. (29)) is comparable to the iterative methods
of solving the elliptic version. The solution obtained at various “timesteps” in
the case of Eq. (29) is analogous to the various “iterates” obtained in the quest
for convergence in the case of Eq. (1). In fact, marching the unsteady-state
heat equation by the basic explicit finite-difference scheme results in values
at each timestep that are identical to successive iterates if the elliptic Laplace
equation is solved by Jacobi iteration [for more details see Marchuk (1975) and
Smith (1978)].

For modeling spectral wave conditions, the input spectrum is discretized
into several components and each component is modeled by methods described
above. The solution of (or significant wave height) any grid point is calculated
by linear superposition (e.g., Li et al., 1993). Significant improvements in speed
may be obtained by using two-level code parallelization for operation on high
performance parallel computing platforms such as the SGI/Cray Origin2000
(O2K). For spectral simulations without interfrequency exchange, the solution
of Eq. (1) for each monochromatic component leads to an independent system
of linear equations. These equations are solved using distributed clusters of
shared-memory multiprocessors (SMPs) which have to communicate and share
the workload, e.g., via a Message Passing Interface, MPIL. Individual wave
components are distributed to multiple processors via MPI and load-balanced
through the Manager-Worker model (Foster, 1997; Bova et al, 2000). At
the second level, matrix operations are parallelized since most of the CPU-
time for each wave component is utilized in the solution of the linear system

Fig. 6. Simulation of spectral wave conditions in Ponce de Leon Inlet, after Bova et al. (2000);
instantaneous snapshot of sea surface.



142 V. Panchang & Z. Demirbilek

of equations. For conjugate gradient solvers, 90% of the CPU time is spent
on matrix-vector products and inner product kernels. Therefore, OpenMP
(OARB 1997) may be used to parallelize the kernels. Two-level parallelization
schemes can use OpenMP to accelerate the solution for each component and
MPI to simultaneously obtain solutions to multiple incident wave components.
More details regarding parallelization schemes for harbor wave models may be
found in Bova et al. (2000) who report a reduction in run times by a factor of
250-580 compared with serial codes for an application in Ponce de Leon Inlet
(Florida). A problem with nearly 300 input spectral components was solved
on a 25 square km domain containing 235,000 nodes in 72 hours. An example
from Bova et al. (2000), shown in Fig. 6, suggests that the simulation produces,
qualitatively, a sea-surface that looks realistic. Model results for this site are
discussed in greater detail by Zhao et al. (2000).

4. Incorporation of Additional Mechanisms

As noted earlier, Eq. (1) incorporates the effects of refraction, diffraction and
reflection induced by any nonhomogeneity in the model domain. Equation (5)
is an extension of Eq. (1) that includes, in addition, the effects of friction and
wave breaking. Similar extensions are possible to include the effects of wave-
current interaction, wave-wave interaction and of steep slopes. The modeling
of these mechanisms in the context of the elliptic equation, Eq. (1), is described
in this section.

4.1. Dissipation

In Eq. (5), W represents the combined effects of friction and breaking which
may be separated as follows,

W =w/Cy+1, (30)

where w is the friction coefficient defined by Dalrymple et al. (1984) and y isa
breaking factor. These coefficients are empirical and parametrizations for these
have been described by Dalrymple et al. (1984), Tsay et al. (1989) and Chen
(1986) for friction, and by Battjes and Janssen (1978), Dally et al. (1985),
Massel (1992), Chawla et al. (1998) and Isobe (1999) for breaking. Some of
these parameterizations have been extensively validated against field data (e.g.,
Larson, 1995; Kamphuis, 1994). We do not repeat the parameterizations here;
rather, we note that they are all dependent on the wave amplitude.
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Published studies demonstrating the effects of friction in harbor models
(e.g., Chen, 1986; Tsay et al., 1989; Demirbilek and Panchang, 1998; Kostense
et al., 1986) have estimated w on the basis of the incident wave amplitude.
It is then easy to pre-specify w while solving Eq. (5). These studies appear
to show that friction can change the magnitude of resonant peaks in harbor
models quite substantially; at other frequencies, the effect seems to be minimal.
Jeong et al. (1996) and Moffatt & Nichol Engineers (1999) have attempted to
utilize W to include harbor entrance losses, however, no details regarding the
modeling technique are presented.

In general, however, since both w and + are functions of the wave amplitude
which is unknown a priori inside the domain, their inclusion makes the problem
nonlinear and requires iteration. For the first iteration, W is set equal to 0
and Eq. (1) is solved (e.g., nonbreaking solutions are obtained). The resulting
wave heights are used to estimate W via the parameterizations for w and 7
and Eq. (5) is solved. The process is repeated until convergence is obtained.

Since dissipation (especially breaking) occurs outside the computational
domain also, open boundary conditions like Egs. (13), (15) and (16) may not
be appropriate. Inclusion of breaking inside the domain and its exclusion in the
exterior descriptions create artificial discontinuities along the open boundary,
especially in shallow areas, and consequently, spurious effects would propagate
into the model domain. In this event, Eq. (20) is a more appropriate description
of the exterior and may be used to develop the necessary boundary conditions.
A digitized bathymetry file is used to obtain the depths d(z) along transect
1. These depths are interpolated onto uniformly spaced nodes and the wave
properties C, C, and k are calculated. Equation (20) may be easily solved
by finite-differences using boundary conditions, Egs. (24) and (25). Again,
iterations are required because W is not known initially. When the solutions
converge, the procedure is repeated for transect 2. These converged solutions of
Eq. (20) along transects 1 and 2 include, albeit in a one-dimensional sense, the
effects of dissipation and hence constitute more appropriate forcing functions
than Eqgs. (13), (15) and (16) do. ¢g along the semicircular open boundary is
obtained via Eq. (26).

Performing nonlinear iterations within the model domain as W varies from
iteration to iteration can be time-intensive. We have explored the possibility
of combining the iterative conjugate gradient methods for the linear system
with the iterations required for the nonlinear modeling, i.e., the conjugate gra-
dient iterates obtained while solving Eq. (28) were perturbed by upgrading W
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periodically. Unfortunately, this maneuvering destroys the robust convergence
properties of the conjugate gradient solvers for Eq. (28). At present, each
linear system, for a specified W, must be completely solved until convergence
is obtained and the whole procedure repeated with a new W. More effective
methods to accelerate the solution need to be developed.

Zhao et al. (2000) developed a finite-element model using Eqgs. (6), (20)
and (27) to formulate the boundary conditions and applied it to several tests
involving breaking. These tests involved a sloping beach, a bar-trough bot-
tom configuration, shore-connected and shore-parallel breakwaters on a slop-
ing beach, and two field cases in the North Sea and Ponce de Leon Inlet
(Florida). Five breaking formulations, given by Battjes and Janssen (1978),
Dally et al. (1985), Massel (1992), Chawla et al. (1998) and Isobe (1999), were
examined. They found that the Isobe (1999) criterion was difficult to use
within the context of the elliptic model and that the absence of a lower break-
ing limit generally contributed to excessive dissipation (compared with data)
in the Chawla et al. (1998) and Massel (1992) formulations. In general, the
formulations of Battjes and Janssen (1978) and Dally et al. (1985) were found
to be the most robust from the point of view of incorporation into an elliptic
model based on Eq. (5) and to provide excellent results compared to data.

For simulations involving several spectral components, Zhao et al. (2000)
examined two approaches. In the first approach, complete simulations were
made one at a time for all monochromatic components where the amplitude
of each component was used in the relevant breaking formula. The results
were subsequently assembled using linear superposition. They found that this
approach led to some overestimation compared with data; this was attributed
to the individual component amplitudes being too small to induce breaking in
the model. In view of this overestimation, a second approach was considered
where the breaking factor was calculated on the basis of the significant wave
height instead of the component wave height. This approach eliminates the in-
dependence of individual component simulations, thereby changing the overall
model numerics. With the second approach, one round of nonlinear iterations
for all components must be performed, the significant wave height is calculated
at each grid point and this larger wave height is used to estimate the breaking
factor (Chawla et al., 1998). This approach led to the initiation of breaking oc-
curring further offshore in the case of their simulations of wave transformation
around Ponce de Leon Inlet. An example of the model simulations near the
US Army Field Research Facility at Duck, North Carolina, is shown in Fig. 7
for an input wave condition given by a significant wave height of 2.3 meters.
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Fig. 7. Modeled wave amplitudes (m) at FRF Duck. Top, no breaking; Bottom, breaking
based on significant wave height.

A complex pattern of waves is created in the middle of the domain due to
the complicated bathymetry. Clearly, breaking plays an important role (the
dots aligned in the shore-perpendicular direction in the middle of these figures
represent circular piles which were assigned full reflection). These simula-
tions were performed with 208 spectral components for a storm in 1996. The
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simulations took 265 hours CPU time using 41 processors and ran nonstop for
about 3 days on the US Army Corps of Engineers super-computer. Comparison
to field data and other details are provided elsewhere.

4.2. Wave-current interaction

Many coastal regions experience high background currents. Wave propagation
is influenced by these currents (e.g., waves opposing the currents become larger
and vice-versa). Based on the derivation by Kirby (1984), one may incorporate
currents in Eq. (5) as follows,

V.(CC,V¢) - V- (U(U-V¢)) + (%af +iC0eW + 0% — a2 +iaV - U)

¢+2icU-V¢=0, (31)

where U(z, y) = current vector (provided by a flow model), o, =0 -k - U=
relative frequency. (02 = gk tanh(kd); C = o0, /k). Several sophisticated
hydrodynamic models are available nowadays for obtaining the desired flowfield
information U(z,y). When hydrodynamic models provide three-dimensional
flowfields, the vertical dependence may be removed for use in Eq. (31) via the
“equivalent uniform current” defined by Hedges and Lee (1992); this quantity
is obtained by vertically averaging the current over a depth L over the water
column where €L = (1/k) tanh (kd).

The generalized mild-slope wave equation, Eq. (31), is still elliptic and
may be solved by the techniques noted previously. For a prespecified U(z, y),
a linear system of equations like Eq. (28) results. However, to compute the
Doppler shift in the wave frequency (0, = ¢ — k - U), the wave vector k
is needed. While the magnitude of k is known a priori from the dispersion
relation, Eq. (2), its direction is not. This problem may be resolved by first
solving Eq. (31) without the effects of wave-current interaction, obtaining an
estimate of the local wave direction, computing the relative frequency o, =
o — k - U, solving Eq. (31) again, revising the wave direction, and repeating
until the model runs converge. Such an approach has been taken by Kostense
et al. (1988); Li and Anastasiou (1992), however, prefer not to calculate the
direction of k in view of the computational burden. While their results for one
test-case (pertaining to waves approaching a rip current on a sloping beach)
are reasonable, iterations are indeed necessary for complex flowfields.

Further difficulties arise in the specification of open boundary conditions.
Published studies using the elliptic model of Eq. (31) have assumed that
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currents are absent on this boundary. Research is needed to develop open
boundary conditions that include the effects of currents (an extension of
Eq. (20) is possible for the case of currents varying only in the cross-shore
direction outside the computational domain).

4.3. Wave-wave interaction

By including most of the nonlinear terms in the vertical integration of the
three-dimensional Laplace equation, Kaihatu and Kirby (1995) obtained an
extension of Eq. (1) that incorporates wave-wave interactions. Expressing the
potential in terms of harmonics as:

N
$(z,4,2,t) = Y falkn,d,2)dn(kn,wn, 7,3, 1), (32)
n=1

where, bk (d+ )
cos +z
=y (53

and performing an integration over the vertical modifies Eq. (5) as follows,

Vi - [(CC)nVén] + ka(CCo)nn +i(CyoW)nén

l=1

. [n—1
= —i [Z 202V - Vo1 + 0101V Gn-1 + On_16n-1V2¢1

O10n—-10n

o (of + o10n-1 + ﬂi“1)¢:¢n_1]

., [N-n
_% [ Z 20, V8] - Vénii + Onsinst V20 — 016] Vidnsi
=1
O10p410 8
= ';;1 % (0f = 010n41 + 011 )9] ¢n+1] . (34)

in which ¢] = complex conjugate value of ¢;.

Similar equations were also derived by Tang and Ouellet (1997) who have
further demonstrated that this type of extension provides the governing equa-
tion, Eq. (1), with the same level of nonlinearity as that in Boussinesq wave
models. This is particularly noteworthy since models based on Eq. (1) or
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Fig. 8. (a) Bathymetry (m) of Whalin (1971) used for wave-wave interaction study, (b) wave
height comparison for wave-wave interaction.

Simulation of Waves in Harbors 149

Eq. (5) simultaneously offer the computational stability and the advantages of
finite-element gridding in harbors and complex coastal areas (which Boussi-
nesq models sometimes lack). From the perspective of the solution technique,
the coupling of harmonics represented by the right hand-side of Eq. (34), if
prespecified, leads to a linear system of equations like Eq. (28). However, for
a given component ¢, the other components constituting the right hand side
are not known a priori. Again, an iterative technique must be used where the
values from the previous round can be used to calculate the right hand side.
Figure 8 shows a finite element model simulation (based on Eq. (34)) of wave
propagation and interaction over the “tilted cylinder” bathymetry of Whalin
(1971). The results match the laboratory data of Whalin (1971) very well and
shows that higher harmonics can build up from zero to a magnitude similar
to the linear solution and can hence contribute much to the overall solution
(hitherto the coupling represented by the right hand side was included only
in simple (parabolic approximation) models; e.g., Tang and Ouellet, 1997 and
Kaihatu and Kirby, 1995).

4.4, Combined nonlinear mechanisms

Equation (34) contains the effects of two of the additional mechanisms de-
scribed so far, i.e., wave-wave interactions and dissipation. By rederiving
Eq. (34) on a moving frame of reference, the equation may be extended to
simultaneously include the effects of wave-current interaction also (Kaihatu
and Kirby, 1995). As demonstrated above, the modeling procedures for each
of these mechanisms are individually nonlinear and require numerical itera-
tions. However, combining all the nonlinear effects in numerical simulations
has as yet been unexplored. An efficient model must juxtapose iterations and
also assure convergence. Further, appropriate tests for the enhanced model
are not readily available (especially for the combination of wave-wave and
wave-current interactions). For systematic model verification, data isolating
and combining these mechanisms are needed. In that regard, the numerical
advancements appear to be preceding data availability.

4.5. Steep-slope effects

Unlike the inclusion of the nonlinear mechanisms described above, overcom-
ing the “mild slope” requirement discussed in Sec. 1 is relatively easy. Mas-
sel (1993), Porter and Staziker (1995), Chamberlain and Porter (1995), and
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Chandrasekera and Cheung (1997) developed extensions of Eq. (1) to in-
clude steep-slope effects. Their extensions may be described by the following
equation,

V - (CC,V¢) + (K*CCy + di(Vh)? +dV?h)$p =0, (35)

where d; and d» are functions of local depths. Reference may be made to
these publications for the various definitions of d; and da; in general, though,
differences in the proposed definitions of these functions impact model results
to a very small extent. The steep-slope terms are fairly straightforward to
include in the model because they are linear. Further, they have the advantage
of being “automatic”, i.e., they have little contribution for mild slopes, do not
change the solution technique and the additional computational demand is
negligible. However, steep slopes lead to breaking and model performance in
the vicinity of steep slopes will involve iterations (an analytical model has been
developed by Massel and Gourlay (2000) to include breaking and steep-slope
effects near coral reefs).

5. Application to Harbors

So far, we have described various developments made in recent years to con-
struct more reliable models based on Eq. (1) for use in domains with arbitrary
shape and bathymetry. In this section, we describe application of one such
model to the practical problem of simulating harbor resonance in the Los
Angeles/Long Beach Harbor complex (Fig. 1) and in Barber's Point Harbor
(Hawaii). Both harbors are undergoing considerable renovation to accommo-
date increased shipping. A finite-element model called CGWAVE was devel-
oped to solve Eq. (5) using Egs. (6), (18), (20) and (27) to formulate the
boundary conditions. The Surface Water Modeling System (Zundell et al,
1998) was used for grid generation.

5.1. Simulations in the Los Angeles/Long
Beach Harbor complex

The Los Angeles/Long Beach Harbor complex (Fig. 1) is one of the largest
harbors in the world; therefore, the model domain is quite large covering an
area of approximately 120 square km. Bathymetric input was obtained by dig-
itizing NOAA chart number 18749. For numerical modeling, a grid containing
285,205 triangular finite elements was developed. It was based on a resolution
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of 10 points per wavelength for a 30-second wave. The two one-dimensional
transects in the exterior were extended in the offshore direction to a distance of
9.2 km beyond which the depth was assumed to be constant. At this location,
the input wave was specified.

For initial quality control simulations, the coastal reflectivity was initially
set equal to zero (i.e., fully absorbing) since this case is easier to examine
qualitatively than the case when a large number of reflections are present.
Figure 9 shows the phase diagram for a 50 second wave. The results appear to
be quite satisfactory. A reduction in the wavelength in the onshore direction
is evident. No spurious boundary effects are seen. Penetration through the
breakwater gaps is precisely as one would expect. Bending of the crests as
they approach from onshore also indicates a correct reproduction of refractive
effects.

For further simulations, the coastal boundary was assumed to be fully re-
flecting (both inside the model and for the one-dimensional transects). Also,
the geometry of the offshore breakwaters was changed. These breakwaters are
known to be permeable to waves (e.g., Chiang, 1987) and it is hence not ap-
propriate to consider them as closed boundaries. Permeable structures cannot
be easily handled within the context of an elliptic boundary value problem.

Fig. 9. Modeled phase diagram for Los Angeles/Long Beach Harber complex; 50 second
obliquely incident wave.
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One approach may be to treat the breakwater as a water area and ascribe an
appropriate dissipation factor in that region. We used an alternative approach
whereby the breakwater was divided into several segments so that energy could
propagate through gaps in the breakwater. 50% of the breakwater length
was opened up by means of numerous gaps interspersed among several solid
segments.

Seabergh and Thomas (1995) conducted hydraulic model simulations for
this complex at the US Army Waterway Experiment Station in Vicksburg,
Mississippi. They collected data at several gages, shown in Fig. 1, for various
harbor plans. The bathymetric data used for numerical modeling obtained
from the more recent NOAA chart was a reasonable approximation of the
harbor geometry described as “Stage II" by Seabergh and Thomas (1995).
However, neither the bathymetry data nor the boundary geometries used in
the two studies were identical.

Seabergh and Thomas (1995) performed their hydraulic model experiments
for a large number of input frequency components varying from 30 seconds to
512 seconds. At each gage location, the amplification factor was measured
for several frequencies and a resonance curve was developed. These curves
were found to be extremely noisy, i.e., the response varied quite rapidly with
frequency at the gages (see example in Fig. 10). For convenience of analysis,
therefore, they partitioned the data into three groups: short period waves (30 s
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Fig. 10. Resonance curve at Gage 56.
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to 42 s), medium period waves (42 s to 205 s) and long period waves (205
s to 512 s). For each gage, the amplification factors within each group were
averaged over the respective frequencies.

Numerical simulations were performed for three incident angles, for normal
incidence and for 30° on either side of it, to account for the effects of the
wave maker. The results of the three directional inputs were averaged for
each frequency. The exact location of each gage was not known, so results in
the general vicinity of the gage as determined from Fig. 1 were extracted and
averaged over the frequency bands stated earlier. In all, simulations were made
for 10, 30 and 17 frequency components in the three bands. These components
are irregularly spaced and correspond approximately to the discrete frequency
components used by Seabergh and Thomas (1995) in their hydraulic model
simulations.

An example of the modeled resonance curve is shown in Fig. 10. At
T = 45 s, the lab data show a remarkably high amplification that the model
underpredicts; conversely, for ' between 300 s and 400 s, the model value is
greater than the hydraulic model data. The overall results for all gages, using
the averaging described above, are compared against the hydraulic model data
in Fig. 11. In general, the numerical simulation predicts the response at the
gages as well as the hydraulic model data. The agreement is quite good for
the short and medium period waves. Greater discrepancy is seen for the long
waves which also exhibit greater gage-to-gage variability. For the long waves,
there seems to be systematic overprediction near certain gages. These discrep-
ancies could be attributed to several factors. First, the two bathymetry sets
are not identical and the high variability implies that small differences in the
geometry can result in large differences in the response. The location of the
input wave is also different in the hydraulic and numerical models. Further,
the exterior sea is bounded in the hydraulic model, thus, possibly preventing
radiation out to the open sea. Finally, reflection coefficients and the degree of
permeability of the breakwaters are not sufficiently well-known.

It'is of course possible to introduce dissipation and/or adjust reflection co-
efficients or breakwater closure to tune the model better so that a calibrated
model for the Los Angeles/Long Beach complex would be available for future
use. However, there is no assurance that the hydraulic model is the true bench-
mark. The high level of agreement between the hydraulic model and numerical
model results for the short and medium period waves and the moderate agree-
ment for the long period waves indicates that the performance of the numerical
and hydraulic models are certainly compatible, although not identical.
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5.2. Simulations in Barber’s Point Harbor

Seiches in Barber’s Point Harbor (Hawaii) have been studied by Okihiro et
al. (1993) and Okihiro and Guza (1996). Okihiro et al. (1993) also used a
numerical model (Chen and Houston, 1987) based on Eq. (5) with Egs. (15)-
(17) describing the open boundary conditions. Such a model, as noted earlier,
confronts the modeler with having to select a constant exterior depth and
to assume that the exterior coastline is fully reflecting. Further, this model
solves Eq. (28) by Gausian elimination. As noted earlier, this creates storage
problems and hence allows only coarse resolution for some frequencies. To
overcome these limitations, Eqgs. (18), (20) and (27) were used to formulate
the open boundary conditions.

Bathymetric data used by Okihiro et al. (1993) were used to develop a new
grid containing about 65,065 elements. The model was run for 136 frequency
components. Full reflection was used on all closed boundaries. Field data
were available at four locations inside the harbor (denoted by East, West,
North and South gages); see Fig. 12. Data were also available at a gage
outside the harbor (denoted by “offshore” gage in Fig. 12); these were used
to normalize the amplification factors inside the harbor. Model results are

Fig. 12. Barber's Point Harbor, bathymetry and gage locations.
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Fig. 13. Wave height comparison for Barbers Point Harbor.

compared against field data in Fig. 13. There is fairly good agreement between
the model calculations and the measurements especially for the long periods.
For the short periods, there appears to be some overprediction by the model.
This is attributed to the fact that shorter waves experience less reflection. The
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simulations with a lower reflection coefficient for these waves and more detailed
results will be presented elsewhere. However, the results at all four locations
inside the harbor are a fairly reasonable reproduction of the field data.

6. Concluding Remarks

In this paper, we have provided a review of recent developments in simulating
ocean waves with models based on the elliptic refraction-diffraction equation.
In general, finite element models appear to be best suited for practical appli-
cations covering the full spectrum of waves to which a harbor may be exposed.
(Some practical applications may be found, for example, in Tang et al., 1999;
Pos et al., 1989; Mattioli, 1996; Kostense et al., 1988). Advances in the treat-
ment of boundary conditions and of matrix systems associated with the dis-
cretized equations have made it possible to eliminate many of the difficulties
that led to inferior solutions. They have also eliminated the need for approxi-
mations of the elliptic model. Further, the advances reduce the burden on the
modeler who does not have to test the sensitivity of model results to unrealistic
assumptions (such as constant depths in the exterior). Applications to the Los
Angeles/Long Beach Harbor region and to Barber’s Point Harbor presented
here demonstrate that finite element modeling with the techniques described
in this paper produces results that are at least as reliable as those obtained by
other methods. Inclusion of additional mechanisms like dissipation, wave-wave
interactions, wave-current interactions and steep slope effects can enhance the
usefulness of these models. However, how a model will behave when these
effects are combined is not yet clear. Further research in modeling methods
as well as data where some of these effects can be combined and isolated are
desirable.
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RECENT ADVANCES IN THE MODELING OF WAVE AND
PERMEABLE STRUCTURE INTERACTION

INIGO J. LOSADA

Artificial and natural porous structures are of great interest in coastal and har-
bor engineering. The modeling of wave interaction with permeable structures is
therefore a key issue to determine the functionality and stability of this kind of
structures. In most circumstances, an averaging process is introduced in the anal-
ysis of the flow in terms of a seepage or discharge velocity and some coefficients
depending on the flow. In order to solve the wave and structure interaction, the
porous flow model is matched with a flow model for the fluid region. In this paper,
it will be shown that several new equations including the resistance forces in the
porous medium have been derived. Newly developed models based on Boussinesg-
type equations or direct resolution of the Navier-Stokes equations using VOF tech-
niques have opened a new range of possible applications. However, these models
still highly depend on porous flow coefficients. Predictive formulae for these con-
stants under oscillatory flow conditions require further research especially if these
models are considered to be an alternative to physical modeling in the design of
coastal structures.

1. Introduction

A porous medium is a two-phase material in which the solid matrix, usually
assumed to be rigid, constitutes one phase and the interconnected voids or
pores constitutes the other. One of the main characteristics of porous media is
the irregular shape and size of its pores, randomly distributed, conferring the
flow through this heterogeneous formation considered a very complex nature.
Our interest will be to determine the flow through the porous formation with
typical length scales much larger than the characteristic pore size.

Artificial porous structures such as rubble-mound breakwaters, submerged
structures, outfall protections, artificial fishing reefs or armor layers for the
protection of seawalls or vertical structures are of great interest in coastal and
harbor engineering since they provide one of the best means to induce incident
wave dissipation by friction inside the structures. Therefore, the knowledge
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